論文の概要: Divide and Learn: A Divide and Conquer Approach for Predict+Optimize
- arxiv url: http://arxiv.org/abs/2012.02342v1
- Date: Fri, 4 Dec 2020 00:26:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-23 12:45:15.601274
- Title: Divide and Learn: A Divide and Conquer Approach for Predict+Optimize
- Title(参考訳): 分割と学習: 予測+最適化のための分割と克服のアプローチ
- Authors: Ali Ugur Guler, Emir Demirovic, Jeffrey Chan, James Bailey,
Christopher Leckie, Peter J. Stuckey
- Abstract要約: 予測+最適化問題は、予測係数を使用する最適化プロブレムと、確率係数の機械学習を組み合わせる。
本稿では, 予測係数を1次線形関数として, 最適化問題の損失を直接表現する方法を示す。
本稿では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測する新しい分割アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 50.03608569227359
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The predict+optimize problem combines machine learning ofproblem coefficients
with a combinatorial optimization prob-lem that uses the predicted
coefficients. While this problemcan be solved in two separate stages, it is
better to directlyminimize the optimization loss. However, this requires
dif-ferentiating through a discrete, non-differentiable combina-torial
function. Most existing approaches use some form ofsurrogate gradient.
Demirovicet alshowed how to directlyexpress the loss of the optimization
problem in terms of thepredicted coefficients as a piece-wise linear function.
How-ever, their approach is restricted to optimization problemswith a dynamic
programming formulation. In this work wepropose a novel divide and conquer
algorithm to tackle op-timization problems without this restriction and predict
itscoefficients using the optimization loss. We also introduce agreedy version
of this approach, which achieves similar re-sults with less computation. We
compare our approach withother approaches to the predict+optimize problem and
showwe can successfully tackle some hard combinatorial problemsbetter than
other predict+optimize methods.
- Abstract(参考訳): 予測+最適化問題は、確率係数の機械学習と予測係数を使用する組合せ最適化プロブレムを組み合わせる。
この問題は2つの異なる段階で解決できるが、最適化損失を直接最小化する方がよい。
しかし、これは離散的で微分不可能な組合せ函数を通して dif-ferentiating を必要とする。
既存のアプローチの多くはある種の代理勾配を用いる。
demirovicet氏は、予測された係数を分割線形関数として、最適化問題の損失を直接表現する方法を示した。
彼らのアプローチは、動的プログラミングの定式化による最適化の問題に限定されている。
本研究では,この制約を伴わずに最適化問題に対処し,最適化損失を用いてその係数を予測するアルゴリズムを提案する。
また, 計算量が少なく, 同様の再実行を実現するため, この手法の合意版も導入した。
我々は,予測最適化問題に対する他のアプローチと比較し,他の予測最適化手法よりも厳密な組合せ問題に対処できることを示す。
関連論文リスト
- BO4IO: A Bayesian optimization approach to inverse optimization with uncertainty quantification [5.031974232392534]
この研究はデータ駆動逆最適化(IO)に対処する。
目的は最適化モデルにおける未知のパラメータを、最適あるいは準最適と仮定できる観測された決定から推定することである。
論文 参考訳(メタデータ) (2024-05-28T06:52:17Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - First-Order Dynamic Optimization for Streaming Convex Costs [0.0]
最適解を有界誤差で追従する手法を開発する。
本アルゴリズムはコスト関数の1次微分を用いてのみ実行される。
論文 参考訳(メタデータ) (2023-10-11T22:41:00Z) - Landscape Surrogate: Learning Decision Losses for Mathematical
Optimization Under Partial Information [48.784330281177446]
学習統合最適化の最近の研究は、最適化が部分的にのみ観察される場合や、専門家のチューニングなしに汎用性が不十分な環境では有望であることを示している。
本稿では,$fcirc mathbfg$の代替として,スムーズで学習可能なランドスケープサロゲートを提案する。
このサロゲートはニューラルネットワークによって学習可能で、$mathbfg$ソルバよりも高速に計算でき、トレーニング中に密度が高く滑らかな勾配を提供し、目に見えない最適化問題に一般化でき、交互最適化によって効率的に学習される。
論文 参考訳(メタデータ) (2023-07-18T04:29:16Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - The Curse of Unrolling: Rate of Differentiating Through Optimization [35.327233435055305]
未分化は反復解法を用いて解を近似し、計算経路を通して解を微分する。
我々は,(1)高速収束につながる大きな学習率を選択することができるが,アルゴリズムが任意に長いバーンインフェーズを持つことを受け入れるか,あるいは(2)即時収束につながるより少ない学習率を選択するかのどちらかを示す。
論文 参考訳(メタデータ) (2022-09-27T09:27:29Z) - Slowly Varying Regression under Sparsity [5.22980614912553]
本稿では, 緩やかな過度回帰の枠組みを提示し, 回帰モデルが緩やかかつスパースな変動を示すようにした。
本稿では,バイナリ凸アルゴリズムとして再構成する手法を提案する。
結果として得られたモデルは、様々なデータセット間で競合する定式化よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-02-22T04:51:44Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。