Dynamic Control of Spontaneous Emission Using Magnetized InSb
Higher-Order-Mode Antennas
- URL: http://arxiv.org/abs/2311.07083v1
- Date: Mon, 13 Nov 2023 05:19:59 GMT
- Title: Dynamic Control of Spontaneous Emission Using Magnetized InSb
Higher-Order-Mode Antennas
- Authors: Sina Aghili, Rasoul Alaee, Amirreza Ahmadnejad, Ehsan Mobini,
Mohamadreza Mohamadpour, Carsten Rockstuhl, Robert W. Boyd, Ksenia Dolgaleva
- Abstract summary: We propose THz sub-wavelength antenna designs that tune the radiative decay rates of dipole emitters at their proximity.
The proposed designs include a spherical InSb antenna and a cylindrical Si-InSb hybrid antenna that demonstrate distinct behaviors.
These novel mechanisms are potentially promising for tunable THz single-photon sources in integrated quantum networks.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We exploit InSb's magnetic-induced optical properties to propose THz
sub-wavelength antenna designs that actively tune the radiative decay rates of
dipole emitters at their proximity. The proposed designs include a spherical
InSb antenna and a cylindrical Si-InSb hybrid antenna that demonstrate distinct
behaviors; the former dramatically enhances both radiative and non-radiative
decay rates in the epsilon-near-zero region due to the dominant contribution of
the Zeeman splitting electric octupole mode. The latter realizes significant
radiative decay rate enhancement via magnetic octupole mode, mitigating the
quenching process and accelerating the photon production rate. A deep
learning-based optimization of emitter positioning further enhances the quantum
efficiency of the proposed hybrid system. These novel mechanisms are
potentially promising for tunable THz single-photon sources in integrated
quantum networks.
Related papers
- Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - High-quality entangled photon source by symmetric beam displacement design [39.58317527488534]
Entangled photon sources are pivotal in advancing quantum communication, computing and sensing.
This work introduces a polarization-entangled photon source, leveraging type-0 spontaneous parametric down-conversion.
We attained a maximal Bell inequality violation, with the average entanglement visibility exceeding 99%.
arXiv Detail & Related papers (2024-07-04T10:29:47Z) - Multicone Diamond Waveguides for Nanoscale Quantum Sensing [0.5131152350448099]
The electronic spin of the nitrogen-vacancy center in diamond is a promising quantum sensor for detecting nanoscopic magnetic and electric fields.
Here, we address the challenge of the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques.
We optimize the structure in simulation, observing an increase in collection efficiency for tall ($geq$ 5 $mu$m) pillars with tapered sidewalls.
An optimized device yields increased SNR, owing to improvements in collimation and directionality of emission.
arXiv Detail & Related papers (2023-06-05T15:28:12Z) - Single site-controlled inverted pyramidal InGaAs QD-nanocavity operating
at the onset of the strong coupling regime [15.529347711119406]
Single site-controlled inverted pyramidal InGaAs QD at the antinode of a GaAs photonic crystal cavity offers great promise for practical on-chip photonic quantum information processing.
Here, we reveal the onset of phonon-mediated coherent exciton-photon interaction on our tailored single site-controlled InGaAs QD.
arXiv Detail & Related papers (2023-04-21T21:29:17Z) - Probing the dynamics and coherence of a semiconductor hole spin via
acoustic phonon-assisted excitation [0.0]
We show that acoustic phonon-assisted excitation can exploit polarization selective optical transitions to initialise and measure single spin states.
We report a spin state detection fidelity of $94.7 pm 0.2 %$ granted by the optical selection rules and a $20pm5$ns hole spin coherence time.
arXiv Detail & Related papers (2022-07-13T06:27:10Z) - Resonant tunneling diodes in semiconductor microcavities: modeling
polaritonic features in the THz displacement current [0.0]
The effect of the quantized electromagnetic field in the displacement current of a resonant tunneling diode is analyzed.
This mimics known effects predicted by a Jaynes-Cummings model in closed systems.
The computational burden involved in the multi-time measurements of THz currents is tackled by invoking a Bohmian description of the light-matter interaction.
arXiv Detail & Related papers (2022-04-27T10:51:03Z) - Tunable directional emission and collective dissipation with quantum
metasurfaces [62.997667081978825]
Subradiant excitations propagate through the atomic array with very long lifetimes.
We demonstrate that one can harness these excitations to obtain tunable directional emission patterns.
We also benchmark how these directional emission patterns translate into collective, anisotropic dissipative couplings.
arXiv Detail & Related papers (2021-07-01T14:26:33Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Tuning the mode-splitting of a semiconductor microcavity with uniaxial
stress [49.212762955720706]
In this work we use an open microcavity composed of a "bottom" semiconductor distributed Bragg reflector (DBR) incorporating an n-i-p heterostructure.
We demonstrate a reversible in-situ technique to tune the mode-splitting by applying uniaxial stress to the semiconductor DBR.
A thorough study of the mode-splitting and its tuning across the stop-band leads to a quantitative understanding of the mechanism behind the results.
arXiv Detail & Related papers (2021-02-18T13:38:32Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Collectively Driven Optical Nanoantennas [0.0]
coherent excitation allows controlling antenna multipoles and on-demand excitation of nonradiative states.
This work paves the way to the use of collective excitations for nanophotonic devices with superb performance.
arXiv Detail & Related papers (2020-06-21T18:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.