Cavity-Enhanced Rydberg Atomic Superheterodyne Receiver
- URL: http://arxiv.org/abs/2502.20792v1
- Date: Fri, 28 Feb 2025 07:18:30 GMT
- Title: Cavity-Enhanced Rydberg Atomic Superheterodyne Receiver
- Authors: Yukang Liang, Qinxia Wang, Zhihui Wang, Shijun Guan, Pengfei Yang, Yuchi Zhang, Jun He, Pengfei Zhang, Gang Li, Tiancai Zhang,
- Abstract summary: The sensitivity of Rydberg superheterodyne receivers in free space is effectively determined by the signal-to-noise ratio (SNR)<n>In this work, we demonstrate a cavity-enhanced receiver, where an optical cavity significantly amplifies the interaction between the probe light and cesium atoms.
- Score: 22.00121282352877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: High-sensitivity measurements of the microwave electric field are important in applications of communication and metrology. \replaced{The sensitivity of traditional Rydberg superheterodyne receivers in free space is effectively determined by the signal-to-noise ratio (SNR), which is often considered equivalent to sensitivity in practical sensing applications.}{The sensitivity of the traditional Rydberg superheterodyne receivers in free space is limited by signal-to-noise contrast.} In this work, we demonstrate a cavity-enhanced receiver, where an optical cavity significantly amplifies the interaction between the probe light and cesium atoms, which substantially improves the signal-to-noise ratio via enhancing the expansion coefficient \( \kappa \). \added{Here, $\kappa$ is the edge slope of the single peak obtained by fitting the double-peak EIT-AT spectrum, characterizing the response of the probe light to the frequency detuning of the coupling laser.}The sensitivity is thus boosted by a factor of approximately 19 dB. This study highlights the pivotal role of optical cavities in advancing Rydberg-based detection systems, offering a promising approach for high-sensitivity microwave electric field measurements.
Related papers
- Multichannel, ultra-wideband Rydberg Electrometry with an Optical Frequency Comb [39.876383980625235]
We show the use of a mid-infrared, frequency agile optical frequency comb as the coupling laser for three-photon Rydberg atom electrometry.
The generality and flexibility of this method for wideband multiplexing is anticipated to have transformative effects in the field of Rydberg electrometry.
arXiv Detail & Related papers (2024-09-09T19:22:28Z) - Dynamic Control of Spontaneous Emission Using Magnetized InSb
Higher-Order-Mode Antennas [0.0]
We propose THz sub-wavelength antenna designs that tune the radiative decay rates of dipole emitters at their proximity.
The proposed designs include a spherical InSb antenna and a cylindrical Si-InSb hybrid antenna that demonstrate distinct behaviors.
These novel mechanisms are potentially promising for tunable THz single-photon sources in integrated quantum networks.
arXiv Detail & Related papers (2023-11-13T05:19:59Z) - High angular momentum coupling for enhanced Rydberg-atom sensing in the
VHF band [33.45861095003339]
This letter documents a series of experiments with Rydberg atomic sensors to collect and process waveforms from the automated identification system (AIS) used in maritime navigation in the Very High Frequency (VHF) band.
We show the results from a new method called High Angular Momentum Matching Excited Raman (HAMMER), which enhances low frequency detection and exhibits superior sensitivity compared to the traditional AC Stark effect.
arXiv Detail & Related papers (2023-10-03T05:53:54Z) - Sensitivity Comparison of Two-photon vs Three-photon Rydberg
Electrometry [45.82374977939355]
We model the 4-level and 5-level atomic system and compare how the transmission of the probe changes with different powers of the lasers used and strengths of the RF field.
We find that the three-photon system boasts much narrower line widths compared to the conventional two-photon EIT.
In addition to this, we calculate the expected sensitivity for the two-photon Rydberg sensor and find that the best achievable sensitivity is over an order of magnitude better than the current measured values of 5 uV/m/Hz.
arXiv Detail & Related papers (2022-11-21T20:46:24Z) - In-situ amplification of spin echoes within a kinetic inductance
parametric amplifier [0.0]
Superconducting micro-resonators in combination with quantum-limited Josephson parametric amplifiers lead to more than four orders of magnitude improvement in sensitivity of pulsed Electron Spin Resonance (ESR) measurements.
We present a technique for coupling an ensemble of spins directly to a weakly nonlinear microwave resonator, which is engineered from a magnetic field-resilient thin superconducting film.
We perform pulsed ESR measurements with a $1$pL effective mode volume and amplify the resulting spin signal using the same device, achieving a sensitivity of $2.8 times 103$ spins in a single-shot Hahn echo measurement at a temperature of 400
arXiv Detail & Related papers (2022-11-21T10:36:41Z) - Rydberg atom-based field sensing enhancement using a split-ring
resonator [50.591267188664666]
We investigate the use of a split-ring resonator incorporated with an atomic-vapor cell to improve sensitivity and the minimal detectable electric field of Rydberg atom-based sensors.
By combining EIT with a heterodyne Rydberg atom-based mixer approach, the SRR allows for the a sensitivity of 5.5$mu$V/m$sqrtrm Hz$, which is two-orders of magnitude improvement in sensitivity than when the SRR is not used.
arXiv Detail & Related papers (2022-02-18T01:44:56Z) - Investigation and comparison of measurement schemes in the low frequency
biosensing regime using solid-state defect centers [58.720142291102135]
Solid state defects in diamond make promising quantum sensors with high sensitivity andtemporal resolution.
Inhomogeneous broadening and drive amplitude variations have differing impacts on the sensitivity depending on the sensing scheme used.
We numerically investigate and compare the predicted sensitivity of schemes based on continuous-wave (CW) optically detected magnetic resonance (ODMR) spectroscopy, pi-pulse ODMR and Ramsey interferometry.
arXiv Detail & Related papers (2021-09-27T13:05:23Z) - High speed microcircuit and synthetic biosignal widefield imaging using
nitrogen vacancies in diamond [44.62475518267084]
We show how to image signals from a microscopic lithographically patterned circuit at the micrometer scale.
Using a new type of lock-in amplifier camera, we demonstrate sub-millisecond spatially resolved recovery of AC and pulsed electrical current signals.
Finally, we demonstrate as a proof of principle the recovery of synthetic signals replicating the exact form of signals in a biological neural network.
arXiv Detail & Related papers (2021-07-29T16:27:39Z) - An integrated magnetometry platform with stackable waveguide-assisted
detection channels for sensing arrays [45.82374977939355]
We present a novel architecture which allows us to create NV$-$-centers a few nanometers below the diamond surface.
We experimentally verify the coupling efficiency, showcase the detection of magnetic resonance signals through the waveguides and perform first proof-of-principle experiments in magnetic field and temperature sensing.
In the future, our approach will enable the development of two-dimensional sensing arrays facilitating spatially and temporally correlated magnetometry.
arXiv Detail & Related papers (2020-12-04T12:59:29Z) - Broadband sensitivity improvement via coherent quantum feedback with PT
symmetry [9.717134926446956]
We propose a stable quantum amplifier applicable to linear systems operating at the fundamental detection limits.
Sensitivity improvements are shown for laser-interferometric gravitational-wave detectors and microwave cavity axion detectors.
arXiv Detail & Related papers (2020-12-01T21:27:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.