論文の概要: Building Trust in the Quantum Cloud with Physical Unclonable Functions
- arxiv url: http://arxiv.org/abs/2311.07094v2
- Date: Tue, 09 Sep 2025 16:03:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 16:45:31.978279
- Title: Building Trust in the Quantum Cloud with Physical Unclonable Functions
- Title(参考訳): 物理的に不可避な機能を持つ量子クラウドにおける信頼の構築
- Authors: Behnam Tonekaboni, Pranav Gokhale, Kaitlin N. Smith,
- Abstract要約: 本稿では,量子デバイス特性を活用して量子物理不能関数(Q-PUF)を構成する認証プロトコルを提案する。
我々は,実データとシミュレーションデータの両方を用いたIBM量子デバイスへのアプローチを試作した。
我々の研究は、ハイブリッド量子古典システムにおけるセキュアでハードウェアに根ざした認証の基礎を築いた。
- 参考スコア(独自算出の注目度): 1.9903304028630213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As cloud-based quantum computing expands, securing access to quantum hardware is increasingly critical. We present an authentication protocol that leverages intrinsic quantum device properties to construct Quantum Physical Unclonable Functions (Q-PUFs). Using frequency fingerprints from fixed-frequency transmon qubits, we prototype our approach on IBM quantum devices with both real and simulated data. We employ fuzzy extractors to generate stable cryptographic keys that tolerate measurement noise and conceal raw hardware data. To support scalability, we introduce q tuples (qubit subsets) that enable challenge response generation for strong PUF behavior. We also outline extensions to neutral atom platforms and propose future directions including logical Q-PUFs. Our work lays the groundwork for secure, hardware-rooted authentication in hybrid quantum-classical systems.
- Abstract(参考訳): クラウドベースの量子コンピューティングが拡大するにつれ、量子ハードウェアへのアクセスの確保がますます重要になっている。
本稿では,本質的な量子デバイス特性を活用して量子物理非包絡関数(Q-PUF)を構築するための認証プロトコルを提案する。
固定周波数トランスモン量子ビットの周波数指紋を用いて、実データとシミュレーションデータの両方を用いたIBM量子デバイスへのアプローチを試作する。
我々はファジィ抽出器を用いて、測定ノイズを許容し、生のハードウェアデータを隠蔽する安定な暗号鍵を生成する。
スケーラビリティをサポートするために,強力なPUF動作のためのチャレンジ応答生成を可能にするqタプル(キュービットサブセット)を導入する。
また、中性原子プラットフォームの拡張を概説し、論理的Q-PUFを含む今後の方向性を提案する。
我々の研究は、ハイブリッド量子古典システムにおけるセキュアでハードウェアに根ざした認証の基礎を築いた。
関連論文リスト
- Technology and Performance Benchmarks of IQM's 20-Qubit Quantum Computer [56.435136806763055]
IQM量子コンピュータはQPUと他のフルスタック量子コンピュータの両方をカバーする。
焦点は、Garnet QPUとそのアーキテクチャを特徴とする20量子ビットの量子コンピュータであり、最大150量子ビットまでスケールする。
QPUとシステムレベルベンチマークは、中央値の2キュービットゲート忠実度99.5%、グリーンバーガー・ホーネ・ザイリンガー(GHZ)状態の20キュービット全てを真のエンハングリングする。
論文 参考訳(メタデータ) (2024-08-22T14:26:10Z) - PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud [7.87660609586004]
クラウドコンピューティングは量子機械学習(QML)においてデータ漏洩のリスクが高い
本稿では,QMLのデータセキュリティをQパラダイム,すなわちPristiQで保護するための協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-20T22:03:32Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
変分量子アルゴリズム(VQA)は、量子デバイス上で量子アドバンテージを達成するための最も有望な候補の1つである。
クライアントのプライベートデータは、そのような量子クラウドモデルで量子サーバにリークされる可能性がある。
量子サーバが暗号化データを計算するための新しい量子ホモモルフィック暗号(QHE)スキームが構築されている。
論文 参考訳(メタデータ) (2023-01-25T07:00:13Z) - Simulation of Networked Quantum Computing on Encrypted Data [0.0]
暗号技術は、量子コンピューティングパワーの安全な遠隔利用のために開発されなければならない。
シミュレーションプラットフォームLIQ$Ui|rangle上で古典的にテストされた,そのようなプロトコルのシミュレーションを提案する。
論文 参考訳(メタデータ) (2022-12-25T20:02:53Z) - Comparison of Quantum PUF models [9.650153007075703]
物理不能関数(英: physical unclonable function、PUF)は、物理系(例えば半導体、結晶など)のハードウェア構造であり、半導体のユニークな識別や暗号プロセスの鍵の確保に使用される。
本稿では,量子トークンベースの認証シミュレータであるQTOKSimの要件を紹介し,その性能を多要素認証プロトコルで検証する。
論文 参考訳(メタデータ) (2022-08-22T21:14:16Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
我々は,化学に着想を得た適応手法の使用と開発のための新しいオープンソースQCパッケージ,Open-VQEを紹介した。
Atos Quantum Learning Machine (QLM)は、コンピュータプログラムを記述、最適化できる汎用プログラミングフレームワークである。
OpenVQEとともに、新しいオープンソースモジュールであるmyQLMFermion(QC開発において重要な重要なQLMリソースを含む)を紹介します。
論文 参考訳(メタデータ) (2022-06-17T14:24:22Z) - Learning Classical Readout Quantum PUFs based on single-qubit gates [9.669942356088377]
統計的クエリ(SQ)モデルを用いて古典的読み出し量子PUF(CR-QPUF)のクラスを定式化する。
敵がCR-QPUFにSQアクセスした場合、シングルビット回転ゲートに基づくCR-QPUFのセキュリティが不十分であることを示す。
悪意ある者がCR-QPUF特性を学習し、量子デバイスのシグネチャを鍛える方法を示す。
論文 参考訳(メタデータ) (2021-12-13T13:29:22Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。