Control Requirements and Benchmarks for Quantum Error Correction
- URL: http://arxiv.org/abs/2311.07121v2
- Date: Wed, 1 May 2024 09:43:41 GMT
- Title: Control Requirements and Benchmarks for Quantum Error Correction
- Authors: Yaniv Kurman, Lior Ella, Ramon Szmuk, Oded Wertheim, Benedikt Dorschner, Sam Stanwyck, Yonatan Cohen,
- Abstract summary: We show how the QEC control system latency performance determines the operation regime of a QEC circuit.
These benchmarks are based on the latency between a measurement and the operation that depends on it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reaching useful fault-tolerant quantum computation relies on successfully implementing quantum error correction (QEC). In QEC, quantum gates and measurements are performed to stabilize the computational qubits, and classical processing is used to convert the measurements into estimated logical Pauli frame updates or logical measurement results. While QEC research has concentrated on developing and evaluating QEC codes and decoding algorithms, specification and clarification of the requirements for the classical control system running QEC codes are lacking. Here, we elucidate the roles of the QEC control system, the necessity to implement low latency feed-forward quantum operations, and suggest near-term benchmarks that confront the classical bottlenecks for QEC quantum computation. These benchmarks are based on the latency between a measurement and the operation that depends on it and incorporate the different control aspects such as quantum-classical parallelization capabilities and decoding throughput. Using a dynamical system analysis, we show how the QEC control system latency performance determines the operation regime of a QEC circuit: latency divergence, where quantum calculations are unfeasible, classical-controller limited runtime, or quantum-operation limited runtime where the classical operations do not delay the quantum circuit. This analysis and the proposed benchmarks aim to allow the evaluation and development of QEC control systems toward their realization as a main component in fault-tolerant quantum computation.
Related papers
- Verifying Fault-Tolerance of Quantum Error Correction Codes [7.796308340803447]
Large-scale fault-tolerant quantum computing still relies on quantum error correction code (QECC) to suppress noise.
This paper formalizes the fault-tolerance of QECC implementations within the language of quantum programs.
arXiv Detail & Related papers (2025-01-24T10:28:24Z) - Controller-decoder system requirements derived by implementing Shor's algorithm with surface code [0.5592394503914488]
Quantum Error Correction (QEC) is widely regarded as the most promising path towards quantum advantage.
We show that the controller-decoder closed-loop latency must remain within tens of microseconds, achievable through parallelizing decoding tasks.
We also simulate the complete fault-tolerant factorization circuit at the physical level, demonstrating that near-term hardware performance, such as a physical error rate of 0.1% and 1000 qubits, are sufficient for the successful execution of the circuit.
arXiv Detail & Related papers (2024-11-29T23:55:29Z) - Architecting a reliable quantum operating system: microkernel, message passing and supercomputing [55.616364225463066]
A quantum operating system (QCOS) is a classic software running on classic hardware.
We discuss why a QCOS should be architected according to the following principles.
arXiv Detail & Related papers (2024-10-17T12:24:55Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Real-Time Decoding for Fault-Tolerant Quantum Computing: Progress,
Challenges and Outlook [0.8066496490637088]
We highlight some of the key challenges facing the implementation of real-time decoders.
We lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding.
arXiv Detail & Related papers (2023-02-28T19:51:03Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Measurement based estimator scheme for continuous quantum error
correction [52.77024349608834]
Canonical discrete quantum error correction (DQEC) schemes use projective von Neumann measurements on stabilizers to discretize the error syndromes into a finite set.
Quantum error correction (QEC) based on continuous measurement, known as continuous quantum error correction (CQEC), can be executed faster than DQEC and can also be resource efficient.
We show that by constructing a measurement-based estimator (MBE) of the logical qubit to be protected, it is possible to accurately track the errors occurring on the physical qubits in real time.
arXiv Detail & Related papers (2022-03-25T09:07:18Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.