Control Requirements and Benchmarks for Quantum Error Correction
- URL: http://arxiv.org/abs/2311.07121v2
- Date: Wed, 1 May 2024 09:43:41 GMT
- Title: Control Requirements and Benchmarks for Quantum Error Correction
- Authors: Yaniv Kurman, Lior Ella, Ramon Szmuk, Oded Wertheim, Benedikt Dorschner, Sam Stanwyck, Yonatan Cohen,
- Abstract summary: We show how the QEC control system latency performance determines the operation regime of a QEC circuit.
These benchmarks are based on the latency between a measurement and the operation that depends on it.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reaching useful fault-tolerant quantum computation relies on successfully implementing quantum error correction (QEC). In QEC, quantum gates and measurements are performed to stabilize the computational qubits, and classical processing is used to convert the measurements into estimated logical Pauli frame updates or logical measurement results. While QEC research has concentrated on developing and evaluating QEC codes and decoding algorithms, specification and clarification of the requirements for the classical control system running QEC codes are lacking. Here, we elucidate the roles of the QEC control system, the necessity to implement low latency feed-forward quantum operations, and suggest near-term benchmarks that confront the classical bottlenecks for QEC quantum computation. These benchmarks are based on the latency between a measurement and the operation that depends on it and incorporate the different control aspects such as quantum-classical parallelization capabilities and decoding throughput. Using a dynamical system analysis, we show how the QEC control system latency performance determines the operation regime of a QEC circuit: latency divergence, where quantum calculations are unfeasible, classical-controller limited runtime, or quantum-operation limited runtime where the classical operations do not delay the quantum circuit. This analysis and the proposed benchmarks aim to allow the evaluation and development of QEC control systems toward their realization as a main component in fault-tolerant quantum computation.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuBEC: Boosting Equivalence Checking for Quantum Circuits with QEC
Embedding [4.15692939468851]
We propose a Decision Diagram-based quantum equivalence checking approach, QuBEC, that requires less latency compared to existing techniques.
Our proposed methodology reduces verification time on certain benchmark circuits by up to $271.49 times$.
arXiv Detail & Related papers (2023-09-19T16:12:37Z) - Quantum Machine Learning on Near-Term Quantum Devices: Current State of Supervised and Unsupervised Techniques for Real-World Applications [1.7041248235270652]
This survey focuses on selected supervised and unsupervised learning applications executed on quantum hardware.
It covers techniques like encoding, ansatz structure, error mitigation, and gradient methods to address these challenges.
arXiv Detail & Related papers (2023-07-03T10:12:34Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum-classical processing and benchmarking at the pulse-level [0.0]
We discuss the requirements for quantum-classical processing at the pulse-level.
We propose well-defined performance benchmarks for quantum control systems.
We expect the metrics defined in this work to continue to push the boundaries of quantum computing via control systems.
arXiv Detail & Related papers (2023-03-07T11:32:38Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Quantum Volume for Photonic Quantum Processors [15.3862808585761]
Defining metrics for near-term quantum computing processors has been an integral part of the quantum hardware research and development efforts.
Most metrics such as randomized benchmarking and quantum volume were originally introduced for circuit-based quantum computers.
We present a framework to map physical noises and imperfections in MBQC processes to logical errors in equivalent quantum circuits.
arXiv Detail & Related papers (2022-08-24T18:05:16Z) - Advancing Hybrid Quantum-Classical Computation with Real-Time Execution [10.818632836746668]
We describe a next-generation implementation of classical computation embedded within quantum programs.
It enables the real-time calculation and adjustment of program variables based on the mid-circuit state of measured qubits.
arXiv Detail & Related papers (2022-06-26T19:50:15Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
Quantum chemistry and materials is one of the most promising applications of quantum computing.
Much work is still to be done in matching industry-relevant problems in these areas with quantum algorithms that can solve them.
arXiv Detail & Related papers (2022-03-14T16:51:36Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.