論文の概要: Input Convex LSTM: A Convex Approach for Fast Lyapunov-Based Model
Predictive Control
- arxiv url: http://arxiv.org/abs/2311.07202v3
- Date: Fri, 19 Jan 2024 05:54:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-22 13:12:08.932410
- Title: Input Convex LSTM: A Convex Approach for Fast Lyapunov-Based Model
Predictive Control
- Title(参考訳): 入力凸LSTM:高速リアプノフモデル予測制御のための凸アプローチ
- Authors: Zihao Wang, Zhe Wu
- Abstract要約: Lyapunov-based Model Predictive Control (MPC) のための新しい入力凸LSTMを提案する。
その結果, ベースラインのRNN, 標準LSTM, 入力凸リカレントニューラルネットワークと比較して, 減少率は46.7%, 31.3%, 20.2%であった。
- 参考スコア(独自算出の注目度): 17.525683429980038
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging Input Convex Neural Networks (ICNNs), ICNN-based Model Predictive
Control (MPC) successfully attains globally optimal solutions by upholding
convexity within the MPC framework. However, current ICNN architectures
encounter the issue of vanishing/exploding gradients, which limits their
ability to serve as deep neural networks for complex tasks. Additionally, the
current neural network-based MPC, including conventional neural network-based
MPC and ICNN-based MPC, faces slower convergence speed when compared to MPC
based on first-principles models. In this study, we leverage the principles of
ICNNs to propose a novel Input Convex LSTM for Lyapunov-based MPC, with the
specific goal of reducing convergence time and mitigating the
vanishing/exploding gradient problem while ensuring closed-loop stability. From
a simulation study of a nonlinear chemical reactor, we observed a mitigation of
vanishing/exploding gradient problem and a reduction in convergence time, with
a percentage decrease of 46.7%, 31.3%, and 20.2% compared to baseline plain
RNN, plain LSTM, and Input Convex Recurrent Neural Networks, respectively.
- Abstract(参考訳): 入力凸ニューラルネットワーク(ICNN)を活用し、ICNNベースのモデル予測制御(MPC)は、MPCフレームワーク内の凸性を維持することで、グローバルに最適なソリューションを実現する。
しかし、現在のicnnアーキテクチャは、複雑なタスクのためのディープニューラルネットワークとして機能する能力を制限する、消失/爆発勾配の問題に遭遇する。
さらに、従来のニューラルネットワークベースのMPCやICNNベースのMPCを含む現在のニューラルネットワークベースのMPCは、第一原理モデルに基づくMPCと比較して収束速度が遅い。
本研究では, リアプノフ系mpcのための新しい入力凸lstmを提案するために, icnnsの原理を活用し, 収束時間を短縮し, 消滅・爆発勾配問題を緩和し, 閉ループ安定性を確保した。
本研究では, 非線形化学反応器のシミュレーションから, 拡散勾配問題の緩和, 収束時間の低減, 46.7%, 31.3%, 20.2%のパーセンテージ低下を観測した。
関連論文リスト
- Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
本稿では、時間窓を用いた多目的車両ルーティング問題(MOVRPTW)に対処するために、ウェイト・アウェア・ディープ・強化学習(WADRL)手法を提案する。
WADRLの結果を最適化するために非支配的ソート遺伝的アルゴリズム-II (NSGA-II) 法を用いる。
論文 参考訳(メタデータ) (2024-07-18T02:46:06Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - Improved Optimization for the Neural-network Quantum States and Tests on the Chromium Dimer [11.985673663540688]
ニューラルネットワーク量子状態(NQS)は、かなり高度な波動関数アンザッツ研究を持っている。
この研究は、NQSを用いたVMC最適化の計算要求を減らすために、3つのアルゴリズム拡張を導入する。
論文 参考訳(メタデータ) (2024-04-14T15:07:57Z) - LitE-SNN: Designing Lightweight and Efficient Spiking Neural Network through Spatial-Temporal Compressive Network Search and Joint Optimization [48.41286573672824]
スパイキングニューラルネットワーク(SNN)は人間の脳の情報処理機構を模倣し、エネルギー効率が高い。
本稿では,空間圧縮と時間圧縮の両方を自動ネットワーク設計プロセスに組み込むLitE-SNNという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-26T05:23:11Z) - Full-Stack Optimization for CAM-Only DNN Inference [2.0837295518447934]
本稿では,3次重み付けニューラルネットワークと連想プロセッサのアルゴリズム最適化の組み合わせについて検討する。
演算強度を低減し,APの畳み込みを最適化する新しいコンパイルフローを提案する。
本研究では,イメージネット上でのResNet-18推論のエネルギー効率を,クロスバーメモリアクセラレータと比較して7.5倍向上させる。
論文 参考訳(メタデータ) (2024-01-23T10:27:38Z) - Energy-Efficient On-Board Radio Resource Management for Satellite
Communications via Neuromorphic Computing [59.40731173370976]
本研究は,エネルギー効率のよい脳誘発機械学習モデルのオンボード無線リソース管理への応用について検討する。
関連するワークロードでは、Loihi 2に実装されたスパイクニューラルネットワーク(SNN)の方が精度が高く、CNNベースのリファレンスプラットフォームと比較して消費電力が100ドル以上削減される。
論文 参考訳(メタデータ) (2023-08-22T03:13:57Z) - Approaching Globally Optimal Energy Efficiency in Interference Networks
via Machine Learning [22.926877147296594]
本研究は,マルチセル無線ネットワークにおけるエネルギー効率(EE)を最適化する機械学習手法を提案する。
その結果,この手法は分岐計算テストにより最適値に近いEEを達成できることが判明した。
論文 参考訳(メタデータ) (2022-11-25T08:36:34Z) - Towards Energy-Efficient, Low-Latency and Accurate Spiking LSTMs [1.7969777786551424]
Spiking Neural Networks(SNN)は、複雑なタスクのための魅力的なテンポラルコンピューティングパラダイムビジョンとして登場した。
そこで本研究では,新規な長期記憶ネットワーク(LSTM)の学習フレームワークを提案する。
rev-to-SNN変換フレームワーク、続いてSNNトレーニング。
我々は、時間的M、Google Speech Commands(GSC)データセット、異なるLSTMアーキテクチャ上のUCIスマートフォンなど、逐次学習タスクに関するフレームワークを評価した。
論文 参考訳(メタデータ) (2022-10-23T04:10:27Z) - Online hyperparameter optimization by real-time recurrent learning [57.01871583756586]
ニューラルネットワーク(rnn)におけるハイパーパラメータ最適化とパラメータ学習の類似性を活用した。
RNNのための学習済みのオンライン学習アルゴリズムのファミリーを適応させ、ハイパーパラメータとネットワークパラメータを同時に調整します。
この手順は、通常の方法に比べて、ウォールクロック時間のほんの少しで、体系的に一般化性能が向上する。
論文 参考訳(メタデータ) (2021-02-15T19:36:18Z) - Efficient On-Chip Learning for Optical Neural Networks Through
Power-Aware Sparse Zeroth-Order Optimization [12.052076188811052]
光ニューラルネットワーク(ONN)は、ニューロモルフィックコンピューティングにおける記録破りの可能性を示した。
我々は,パワー効率向上のためのONNの潜在能力を最大限に発揮するための,新しいオンチップ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-21T07:00:39Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。