論文の概要: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- arxiv url: http://arxiv.org/abs/2401.07494v5
- Date: Fri, 24 Jan 2025 15:48:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:54:12.092537
- Title: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- Title(参考訳): 入力凸リプシッツRNN: エンジニアリングタスクの高速かつロバストなアプローチ
- Authors: Zihao Wang, Zhe Wu,
- Abstract要約: 入力凸リプシッツリカレントニューラルネットワーク(ICLRNN)と呼ばれる新しいネットワークアーキテクチャを導入する。
このアーキテクチャは、凸性とリプシッツ連続性の利点をシームレスに統合し、高速で堅牢なニューラルネットワークベースのモデリングと最適化を可能にする。
化学プロセスのモデリングと制御、ソーラーPVシステム計画のための実世界の太陽放射予測など、実用的な技術シナリオにうまく応用されている。
- 参考スコア(独自算出の注目度): 14.835081385422653
- License:
- Abstract: Computational efficiency and robustness are essential in process modeling, optimization, and control for real-world engineering applications. While neural network-based approaches have gained significant attention in recent years, conventional neural networks often fail to address these two critical aspects simultaneously or even independently. Inspired by natural physical systems and established literature, input convex architectures are known to enhance computational efficiency in optimization tasks, whereas Lipschitz-constrained architectures improve robustness. However, combining these properties within a single model requires careful review, as inappropriate methods for enforcing one property can undermine the other. To overcome this, we introduce a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks (ICLRNNs). This architecture seamlessly integrates the benefits of convexity and Lipschitz continuity, enabling fast and robust neural network-based modeling and optimization. The ICLRNN outperforms existing recurrent units in both computational efficiency and robustness. Additionally, it has been successfully applied to practical engineering scenarios, such as modeling and control of chemical process and the modeling and real-world solar irradiance prediction for solar PV system planning at LHT Holdings in Singapore. Source code is available at https://github.com/killingbear999/ICLRNN.
- Abstract(参考訳): 計算効率と堅牢性は、実世界のエンジニアリングアプリケーションのためのプロセスモデリング、最適化、制御において不可欠である。
近年,ニューラルネットワークに基づくアプローチが注目されているが,従来のニューラルネットワークでは,これら2つの重要な側面を同時に,あるいは独立して対処することができない場合が多い。
自然物理システムや確立された文献に触発されて、入力凸アーキテクチャは最適化タスクの計算効率を高めることが知られているが、リプシッツ制約アーキテクチャは堅牢性を向上させる。
しかし、1つのモデルでこれらのプロパティを組み合わせるには、あるプロパティを強制する不適切なメソッドが他方を損なう可能性があるため、慎重にレビューする必要がある。
これを解決するために、入出力凸リプシッツリカレントニューラルネットワーク(ICLRNN)と呼ばれる新しいネットワークアーキテクチャを導入する。
このアーキテクチャは、凸性とリプシッツ連続性の利点をシームレスに統合し、高速で堅牢なニューラルネットワークベースのモデリングと最適化を可能にする。
ICLRNNは、計算効率と堅牢性の両方において、既存の繰り返しユニットよりも優れている。
さらに、シンガポールのLHTホールディングスのソーラーPVシステム計画のための化学プロセスのモデリングと制御、および実世界の太陽照射予測といった実践的な技術シナリオにもうまく適用されている。
ソースコードはhttps://github.com/killingbear999/ICLRNNで入手できる。
関連論文リスト
- Accelerating Linear Recurrent Neural Networks for the Edge with Unstructured Sparsity [39.483346492111515]
線形リカレントニューラルネットワークは、推論中に一定のメモリ使用量と時間毎の時間を含む強力な長距離シーケンスモデリングを可能にする。
非構造化空間は、互換性のあるハードウェアプラットフォームによって加速されるときに、計算とメモリの要求を大幅に削減できる魅力的なソリューションを提供する。
非常に疎い線形RNNは、高密度ベースラインよりも高い効率と性能のトレードオフを一貫して達成している。
論文 参考訳(メタデータ) (2025-02-03T13:09:21Z) - Energy-Aware FPGA Implementation of Spiking Neural Network with LIF Neurons [0.5243460995467893]
スパイキングニューラルネットワーク(SNN)は、TinyMLの最先端ソリューションとして際立っている。
本稿では,第1次Leaky Integrate-and-Fire(LIF)ニューロンモデルに基づく新しいSNNアーキテクチャを提案する。
ハードウェアフレンドリーなLIF設計も提案され、Xilinx Artix-7 FPGA上で実装されている。
論文 参考訳(メタデータ) (2024-11-03T16:42:10Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Auto-Train-Once: Controller Network Guided Automatic Network Pruning from Scratch [72.26822499434446]
オートトレインオース (Auto-Train-Once, ATO) は、DNNの計算コストと記憶コストを自動的に削減するために設計された、革新的なネットワークプルーニングアルゴリズムである。
総合的な収束解析と広範な実験を行い,本手法が様々なモデルアーキテクチャにおける最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2024-03-21T02:33:37Z) - Spyx: A Library for Just-In-Time Compiled Optimization of Spiking Neural
Networks [0.08965418284317034]
Spiking Neural Networks(SNN)は、小さくて低消費電力なハードウェアフットプリントによるエネルギー効率の向上を提供する。
本稿では、JAXで設計された新しい軽量SNNシミュレーションおよび最適化ライブラリSpyxを紹介する。
論文 参考訳(メタデータ) (2024-02-29T09:46:44Z) - Parallel Spiking Unit for Efficient Training of Spiking Neural Networks [8.912926151352888]
スパイキングニューラルネットワーク(SNN)は、人工知能の進歩に使用される。
SNNは、その固有の逐次計算依存によって妨げられている。
本稿では、革新的なParallel Spiking Unit(PSU)とその2つの誘導体、IPSU(IPSU)とRPSU(RPSU)を紹介する。
これらの変種は、リセットプロセスを確率的に管理しながら、スパイキングニューロンの漏れた積分と発火機構を巧みに分離する。
論文 参考訳(メタデータ) (2024-02-01T09:36:26Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
ニューラルネットワークのような予測器のための新しいトレーニング原理であるLFP(Layer-wise Feedback Propagation)を提案する。
LFPは、与えられたタスクの解決へのそれぞれの貢献に基づいて、個々のニューロンに報酬を分解する。
提案手法は,ネットワークの有用な部分を補強し,有害な部分を弱めるという欲求的アプローチを実現する。
論文 参考訳(メタデータ) (2023-08-23T10:48:28Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
認証された堅牢性は、安全クリティカルなアプリケーションにおいて、ディープニューラルネットワークにとって望ましい性質である。
提案手法は,MNISTおよびTinyNetデータセットにおける最先端の手法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2021-11-02T06:44:10Z) - Fully-parallel Convolutional Neural Network Hardware [0.7829352305480285]
本稿では,ハードウェアにArticial Neural Networks(ANN)を実装するための,新しい電力・面積効率アーキテクチャを提案する。
LENET-5として完全に並列なCNNを1つのFPGAに埋め込んでテストするのが初めてである。
論文 参考訳(メタデータ) (2020-06-22T17:19:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。