論文の概要: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- arxiv url: http://arxiv.org/abs/2401.07494v5
- Date: Fri, 24 Jan 2025 15:48:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:54:12.092537
- Title: Input Convex Lipschitz RNN: A Fast and Robust Approach for Engineering Tasks
- Title(参考訳): 入力凸リプシッツRNN: エンジニアリングタスクの高速かつロバストなアプローチ
- Authors: Zihao Wang, Zhe Wu,
- Abstract要約: 入力凸リプシッツリカレントニューラルネットワーク(ICLRNN)と呼ばれる新しいネットワークアーキテクチャを導入する。
このアーキテクチャは、凸性とリプシッツ連続性の利点をシームレスに統合し、高速で堅牢なニューラルネットワークベースのモデリングと最適化を可能にする。
化学プロセスのモデリングと制御、ソーラーPVシステム計画のための実世界の太陽放射予測など、実用的な技術シナリオにうまく応用されている。
- 参考スコア(独自算出の注目度): 14.835081385422653
- License:
- Abstract: Computational efficiency and robustness are essential in process modeling, optimization, and control for real-world engineering applications. While neural network-based approaches have gained significant attention in recent years, conventional neural networks often fail to address these two critical aspects simultaneously or even independently. Inspired by natural physical systems and established literature, input convex architectures are known to enhance computational efficiency in optimization tasks, whereas Lipschitz-constrained architectures improve robustness. However, combining these properties within a single model requires careful review, as inappropriate methods for enforcing one property can undermine the other. To overcome this, we introduce a novel network architecture, termed Input Convex Lipschitz Recurrent Neural Networks (ICLRNNs). This architecture seamlessly integrates the benefits of convexity and Lipschitz continuity, enabling fast and robust neural network-based modeling and optimization. The ICLRNN outperforms existing recurrent units in both computational efficiency and robustness. Additionally, it has been successfully applied to practical engineering scenarios, such as modeling and control of chemical process and the modeling and real-world solar irradiance prediction for solar PV system planning at LHT Holdings in Singapore. Source code is available at https://github.com/killingbear999/ICLRNN.
- Abstract(参考訳): 計算効率と堅牢性は、実世界のエンジニアリングアプリケーションのためのプロセスモデリング、最適化、制御において不可欠である。
近年,ニューラルネットワークに基づくアプローチが注目されているが,従来のニューラルネットワークでは,これら2つの重要な側面を同時に,あるいは独立して対処することができない場合が多い。
自然物理システムや確立された文献に触発されて、入力凸アーキテクチャは最適化タスクの計算効率を高めることが知られているが、リプシッツ制約アーキテクチャは堅牢性を向上させる。
しかし、1つのモデルでこれらのプロパティを組み合わせるには、あるプロパティを強制する不適切なメソッドが他方を損なう可能性があるため、慎重にレビューする必要がある。
これを解決するために、入出力凸リプシッツリカレントニューラルネットワーク(ICLRNN)と呼ばれる新しいネットワークアーキテクチャを導入する。
このアーキテクチャは、凸性とリプシッツ連続性の利点をシームレスに統合し、高速で堅牢なニューラルネットワークベースのモデリングと最適化を可能にする。
ICLRNNは、計算効率と堅牢性の両方において、既存の繰り返しユニットよりも優れている。
さらに、シンガポールのLHTホールディングスのソーラーPVシステム計画のための化学プロセスのモデリングと制御、および実世界の太陽照射予測といった実践的な技術シナリオにもうまく適用されている。
ソースコードはhttps://github.com/killingbear999/ICLRNNで入手できる。
関連論文リスト
- A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear partial differential equations [2.7755345520127936]
非定常・非線形偏微分方程式(PDE)を正確にモデル化するためのドメイン分割型ディープラーニング(DL)フレームワークCoMLSimを提案する。
このフレームワークは、(a)畳み込みニューラルネットワーク(CNN)ベースのオートエンコーダアーキテクチャと(b)完全に接続された層で構成される自己回帰モデルという、2つの重要なコンポーネントで構成されている。
論文 参考訳(メタデータ) (2024-08-26T17:50:47Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
我々は、様々な計算プリミティブから構築された新しいハイブリッドアーキテクチャを特定し、テストする。
本研究では,大規模計算最適法則と新しい状態最適スケーリング法則解析を用いて,結果のアーキテクチャを実験的に検証する。
我々は,MAD合成法と計算-最適パープレキシティを相関させ,新しいアーキテクチャの正確な評価を可能にする。
論文 参考訳(メタデータ) (2024-03-26T16:33:12Z) - Parallel Spiking Unit for Efficient Training of Spiking Neural Networks [8.912926151352888]
スパイキングニューラルネットワーク(SNN)は、人工知能の進歩に使用される。
SNNは、その固有の逐次計算依存によって妨げられている。
本稿では、革新的なParallel Spiking Unit(PSU)とその2つの誘導体、IPSU(IPSU)とRPSU(RPSU)を紹介する。
これらの変種は、リセットプロセスを確率的に管理しながら、スパイキングニューロンの漏れた積分と発火機構を巧みに分離する。
論文 参考訳(メタデータ) (2024-02-01T09:36:26Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
本稿では,変換器の効率的な並列化学習とRNNの効率的な推論を組み合わせた新しいモデルアーキテクチャを提案する。
モデルを最大14億のパラメータにスケールし、トレーニングされたRNNの中では最大で、同じサイズのTransformerと同等のRWKVのパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2023-05-22T13:57:41Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
Adapter-ALBERTは、様々なタスクにわたる最大データ再利用のための効率的なモデル最適化である。
検証されたNLPエッジアクセラレータ上でシミュレーションを行うことにより、モデルを不均一なオンチップメモリアーキテクチャにマッピングする利点を実証する。
論文 参考訳(メタデータ) (2023-03-25T14:40:59Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
本稿では,CNNの層レベルでの複雑さを生かして,新しい,計算効率の高いプルーニングパイプラインを提案する。
パラメータ認識(PA)、FLOP認識(FA)、メモリ認識(MA)の3つのモードを定義し、CNNの汎用圧縮を導入する。
論文 参考訳(メタデータ) (2022-08-26T16:01:23Z) - FreeREA: Training-Free Evolution-based Architecture Search [17.202375422110553]
FreeREAは、トレーニングなしメトリクスの最適化組み合わせを利用してアーキテクチャをランク付けする、独自のセルベースの進化NASアルゴリズムである。
本実験はNAS-Bench-101とNATS-Benchの共通ベンチマークを用いて,フリーレアがモデル自動設計のための高速で効率的かつ効果的な探索手法であることを実証した。
論文 参考訳(メタデータ) (2022-06-17T11:16:28Z) - Towards Optimal VPU Compiler Cost Modeling by using Neural Networks to
Infer Hardware Performances [58.720142291102135]
VPUNN"は低レベルのタスクプロファイリングに基づいてトレーニングされたニューラルネットワークベースのコストモデルである。
これは、IntelのVPUプロセッサのラインにおける最先端のコストモデリングよりも一貫して優れている。
論文 参考訳(メタデータ) (2022-05-09T22:48:39Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
ディープ均衡モデル(Deep equilibrium model)は、従来のネットワークの深さを予測し、代わりに単一の非線形層の固定点を見つけることによってネットワークの出力を計算するモデルのクラスである。
この2つの設定の間には自然なシナジーがあることが示されています。
この戦略は、生成モデルのトレーニングや、潜時符号の最適化、デノベートやインペインティングといった逆問題に対するトレーニングモデル、対逆トレーニング、勾配に基づくメタラーニングなど、様々なタスクにおいて実証される。
論文 参考訳(メタデータ) (2021-11-25T19:59:33Z) - Near-Optimal Hardware Design for Convolutional Neural Networks [0.0]
本研究では,畳み込みニューラルネットワークのための新しい,特殊目的,高効率ハードウェアアーキテクチャを提案する。
提案アーキテクチャは,モデルの計算フローと同じ構造を持つ計算回路を設計することにより,乗算器の利用を最大化する。
提案するハードウェアアーキテクチャに基づく実装が,商用AI製品に適用されている。
論文 参考訳(メタデータ) (2020-02-06T09:15:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。