論文の概要: Temporal Performance Prediction for Deep Convolutional Long Short-Term
Memory Networks
- arxiv url: http://arxiv.org/abs/2311.07477v1
- Date: Mon, 13 Nov 2023 17:11:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-14 13:20:12.922216
- Title: Temporal Performance Prediction for Deep Convolutional Long Short-Term
Memory Networks
- Title(参考訳): 深部畳み込み長短期記憶ネットワークにおける時間的性能予測
- Authors: Laura Fieback (1), Bidya Dash (1), Jakob Spiegelberg (1), Hanno
Gottschalk (2) ((1) Volkswagen AG, (2) TU Berlin)
- Abstract要約: 本稿では,畳み込み型長期記憶ネットワークの予測性能を推定する時間後処理手法を提案する。
この目的のために,セグメントごとの時間セル状態に基づく入力メトリクスを作成し,予測品質を推定するための異なるモデルについて検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantifying predictive uncertainty of deep semantic segmentation networks is
essential in safety-critical tasks. In applications like autonomous driving,
where video data is available, convolutional long short-term memory networks
are capable of not only providing semantic segmentations but also predicting
the segmentations of the next timesteps. These models use cell states to
broadcast information from previous data by taking a time series of inputs to
predict one or even further steps into the future. We present a temporal
postprocessing method which estimates the prediction performance of
convolutional long short-term memory networks by either predicting the
intersection over union of predicted and ground truth segments or classifying
between intersection over union being equal to zero or greater than zero. To
this end, we create temporal cell state-based input metrics per segment and
investigate different models for the estimation of the predictive quality based
on these metrics. We further study the influence of the number of considered
cell states for the proposed metrics.
- Abstract(参考訳): ディープセグメンテーションネットワークの予測の不確かさの定量化は、安全クリティカルなタスクにおいて不可欠である。
ビデオデータが利用可能である自律運転のようなアプリケーションでは、畳み込み長期記憶ネットワークはセマンティックセグメンテーションを提供するだけでなく、次のタイムステップのセグメンテーションを予測することができる。
これらのモデルでは、セル状態を使用して過去のデータから情報をブロードキャストし、時系列の入力を受け取り、将来への1つまたはそれ以上のステップを予測する。
本稿では,畳み込み型長期短期記憶ネットワークの予測性能を予測できる時間後処理法を提案する。
この目的のために,セグメント毎の時間的セル状態に基づく入力メトリックを作成し,これらのメトリクスに基づいて予測品質を推定するための異なるモデルについて検討する。
さらに,提案する指標に対する細胞状態数の影響についても検討した。
関連論文リスト
- Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Towards Anytime Classification in Early-Exit Architectures by Enforcing
Conditional Monotonicity [5.425028186820756]
任意のアルゴリズムは、計算予算が動的である環境に適しています。
現在のアーリーエグジットネットワークは、任意の設定に直接適用できないことを示す。
本稿では,製品・オブ・エグゼクティブ(Product-of-Experts)に基づくエレガントなポストホック修正を提案する。
論文 参考訳(メタデータ) (2023-06-05T07:38:13Z) - Hidden State Approximation in Recurrent Neural Networks Using Continuous
Particle Filtering [0.0]
過去のデータを使って将来の出来事を予測することは、株価の予測やロボットのローカライゼーションなど、現実世界に多くの応用がある。
本稿では, 粒子を用いて潜伏状態の分布を近似し, より複雑な状態に拡張する方法を示す。
提案した連続微分可能スキームでは,ベイズ則に従って付加価値情報を適応的に抽出し,潜時状態を更新することができる。
論文 参考訳(メタデータ) (2022-12-18T04:31:45Z) - Sequential Learning Of Neural Networks for Prequential MDL [18.475866691786695]
ニューラルネットワークを用いた画像分類データセットの事前記述長の計算手法を評価する。
計算コストを考慮すると、リハーサルによるオンライン学習は好成績であることがわかった。
本稿では,画像分類データセットの集合に対する記述長について述べる。
論文 参考訳(メタデータ) (2022-10-14T16:30:23Z) - Direct Embedding of Temporal Network Edges via Time-Decayed Line Graphs [51.51417735550026]
時間的ネットワーク上での機械学習の方法は、一般的に2つの制限のうちの少なくとも1つを示す。
ネットワークのライングラフは,各インタラクションのノードを含むもので,インタラクション間の時間差に基づいて,このグラフのエッジを重み付けする。
実世界のネットワークにおける実験結果から,エッジ分類と時間リンク予測の両方において,本手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2022-09-30T18:24:13Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Improving Video Instance Segmentation by Light-weight Temporal
Uncertainty Estimates [11.580916951856256]
本稿では,インスタンスセグメンテーションネットワークの不確かさをモデル化するための時間動的手法を提案する。
本稿では,偽陽性の検出と予測品質の推定に本手法を適用した。
提案手法は、容易に訓練されたニューラルネットワークとビデオシーケンス入力のみを必要とする。
論文 参考訳(メタデータ) (2020-12-14T13:39:05Z) - Representation Learning for Sequence Data with Deep Autoencoding
Predictive Components [96.42805872177067]
本稿では,シーケンスデータの有用な表現が潜在空間における単純な構造を示すべきという直感に基づく,シーケンスデータの自己教師型表現学習法を提案する。
我々は,過去と将来のウィンドウ間の相互情報である潜在特徴系列の予測情報を最大化することにより,この潜時構造を奨励する。
提案手法は,ノイズの多い動的システムの潜時空間を復元し,タスク予測のための予測特徴を抽出し,エンコーダを大量の未ラベルデータで事前訓練する場合に音声認識を改善する。
論文 参考訳(メタデータ) (2020-10-07T03:34:01Z) - Time-series Imputation and Prediction with Bi-Directional Generative
Adversarial Networks [0.3162999570707049]
本稿では,不規則に観測された時系列データと不規則なエントリを含む長さの時系列データの計算と予測を併用したタスクのモデルを提案する。
我々のモデルは、入力時間ステップ(予測)の内側または外側の欠落した要素をインプットする方法を学び、したがって、時系列データに有効な任意の時間予測ツールとして機能する。
論文 参考訳(メタデータ) (2020-09-18T15:47:51Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。