論文の概要: Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
- arxiv url: http://arxiv.org/abs/2311.07614v2
- Date: Sat, 27 Apr 2024 01:49:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:34:56.095374
- Title: Application of a Dense Fusion Attention Network in Fault Diagnosis of Centrifugal Fan
- Title(参考訳): 遠心ファンの故障診断における高密度核融合注意ネットワークの適用
- Authors: Ruijun Wang, Yuan Liu, Zhixia Fan, Xiaogang Xu, Huijie Wang,
- Abstract要約: 本稿では,従来の密集カスケード操作ではなく,分散注意モジュールを密接な接続に埋め込む方法について論じる。
提案した高密度融合は,ネットワーク診断プロセスの可視化に焦点を当て,モデル診断の解釈可能性を高める。
実験の結果,ネットワークの診断性能は,他の先進的な故障診断モデルよりも高いことがわかった。
- 参考スコア(独自算出の注目度): 15.414035116487037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the deep learning recognition model has been widely used in the condition monitoring of rotating machinery. However, it is still a challenge to understand the correspondence between the structure and function of the model and the diagnosis process. Therefore, this paper discusses embedding distributed attention modules into dense connections instead of traditional dense cascading operations. It not only decouples the influence of space and channel on fault feature adaptive recalibration feature weights, but also forms a fusion attention function. The proposed dense fusion focuses on the visualization of the network diagnosis process, which increases the interpretability of model diagnosis. How to continuously and effectively integrate different functions to enhance the ability to extract fault features and the ability to resist noise is answered. Centrifugal fan fault data is used to verify this network. Experimental results show that the network has stronger diagnostic performance than other advanced fault diagnostic models.
- Abstract(参考訳): 深層学習認識モデルは, 回転機械の状態監視に広く用いられている。
しかし,モデルの構造と機能と診断プロセスとの対応を理解することは依然として困難である。
そこで本稿では,従来の密集カスケード操作ではなく,分散注意モジュールを密接な接続に埋め込む方法について論じる。
空間とチャネルの影響を分離するだけでなく、断層特性適応化特徴量にも影響し、融合注意関数を形成する。
提案した高密度融合は,ネットワーク診断プロセスの可視化に焦点を当て,モデル診断の解釈可能性を高める。
障害の特徴を抽出し、ノイズに抵抗する能力を高めるために、異なる機能を継続的に効果的に統合する方法が答えられる。
遠心ファンフォールトデータは、このネットワークを検証するために使用される。
実験の結果,ネットワークの診断性能は,他の先進的な故障診断モデルよりも高いことがわかった。
関連論文リスト
- Brain Network Diffusion-Driven fMRI Connectivity Augmentation for Enhanced Autism Spectrum Disorder Diagnosis [12.677178802864029]
fMRIデータ取得とラベル付けのコストが高いため、fMRIデータの量は少ないことが多い。
生成モデル、特に拡散モデルの増加に伴い、実際のデータ分布に近い現実的なサンプルを生成する能力は、データ拡張に広く利用されている。
論文 参考訳(メタデータ) (2024-09-11T08:02:57Z) - TDANet: A Novel Temporal Denoise Convolutional Neural Network With Attention for Fault Diagnosis [0.5277756703318045]
本稿では,音環境における故障診断性能を向上させるため,TDANet(Tunal Denoise Convolutional Neural Network With Attention)を提案する。
TDANetモデルは、その周期特性に基づいて1次元信号を2次元テンソルに変換し、マルチスケールの2次元畳み込みカーネルを用いて周期内および周期間の信号情報を抽出する。
CWRU (single sensor) とReal Aircraft Sensor Fault (multiple sensor) の2つのデータセットに対する評価は、TDANetモデルがノイズの多い環境下での診断精度において既存のディープラーニングアプローチを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2024-03-29T02:54:41Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
ハイパースペクトル画像(HSI)は、ハイパースペクトルデータの効果的な解析と解釈に重要である。
ハイブリット・コンボリューション・アテンション・ネットワーク(HCANet)を提案する。
主流HSIデータセットに対する実験結果は,提案したHCANetの合理性と有効性を示している。
論文 参考訳(メタデータ) (2024-03-15T07:18:43Z) - Joint Attention-Guided Feature Fusion Network for Saliency Detection of
Surface Defects [69.39099029406248]
本稿では,エンコーダ・デコーダネットワークに基づく表面欠陥検出のための共同注意誘導型特徴融合ネットワーク(JAFFNet)を提案する。
JAFFNetは、主にJAFFモジュールをデコードステージに組み込んで、低レベルと高レベルの機能を適応的に融合させる。
SD- Saliency-900, Magnetic tile, and DAGM 2007 で行った実験から,本手法が他の最先端手法と比較して有望な性能を達成できたことが示唆された。
論文 参考訳(メタデータ) (2024-02-05T08:10:16Z) - BDHT: Generative AI Enables Causality Analysis for Mild Cognitive Impairment [34.60961915466469]
軽度認知障害 (MCI) 解析に有効な接続性を推定するために, 階層型トランスフォーマー (BDHT) を用いた脳ディフューザを提案する。
提案手法は,既存手法に比べて精度と頑健性に優れる。
論文 参考訳(メタデータ) (2023-12-14T15:12:00Z) - Robust Learning Based Condition Diagnosis Method for Distribution
Network Switchgear [8.515214508489558]
本稿では,分散ネットワークスイッチギアの状態を診断するための頑健な学習手法を提案する。
本手法は, 環境データ, 温度測定, スイッチ位置, モータ動作, 絶縁条件, 局所放電情報を含む拡張特徴ベクトルを含む。
論文 参考訳(メタデータ) (2023-11-14T07:20:46Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
本研究では, 軸受破壊機構の因果性を学ぶために, 因果解離隠れマルコフモデル (CDHM) を提案する。
具体的には、時系列データをフル活用し、振動信号を断層関連要因と断層関連要因に段階的に分解する。
アプリケーションの範囲を広げるために、学習された非絡み合った表現を他の作業環境に転送するために、教師なしのドメイン適応を採用する。
論文 参考訳(メタデータ) (2023-08-06T05:58:45Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
人為的なシステムのレジリエンスを、予期せぬ事象に対して向上させるためのエンドツーエンドのフレームワークを実証する。
このフレームワークは物理ベースのデジタルツインモデルと,リアルタイム故障診断,予後,再構成を行う3つのモジュールに基づいている。
論文 参考訳(メタデータ) (2022-08-30T20:16:17Z) - On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine [54.650189434544146]
データ駆動型故障診断・隔離方式は, 燃料供給システムにおける故障とセンサ測定のために, 明確に開発されている。
モデルは機械学習の分類器を使用してトレーニングされ、トレーニングされた障害シナリオのセットをリアルタイムで検出する。
提案手法の利点, 性能, 性能を実証し, 実証するために, いくつかのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2021-10-17T13:42:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。