論文の概要: A Fast and Simple Algorithm for computing the MLE of Amplitude Density
Function Parameters
- arxiv url: http://arxiv.org/abs/2311.07951v1
- Date: Tue, 14 Nov 2023 07:04:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 15:18:17.365618
- Title: A Fast and Simple Algorithm for computing the MLE of Amplitude Density
Function Parameters
- Title(参考訳): 振幅密度関数パラメータのMLE計算のための高速かつ簡単なアルゴリズム
- Authors: Mahdi Teimouri
- Abstract要約: 本研究は,振幅分布のパラメータに対して最大極大推定器 (MLE) を提案する。
MLEを非常に高速に計算できるゼロロケーション対称な$alpha$-stale分布に従うことが証明された。
振幅分布のパラメータを推定する手法として,2つのエンフプロジェクションに基づく計算MLEの平均値が考えられる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last decades, the family of $\alpha$-stale distributions has proven
to be useful for modelling in telecommunication systems. Particularly, in the
case of radar applications, finding a fast and accurate estimation for the
amplitude density function parameters appears to be very important. In this
work, the maximum likelihood estimator (MLE) is proposed for parameters of the
amplitude distribution. To do this, the amplitude data are \emph{projected} on
the horizontal and vertical axes using two simple transformations. It is proved
that the \emph{projected} data follow a zero-location symmetric $\alpha$-stale
distribution for which the MLE can be computed quite fast. The average of
computed MLEs based on two \emph{projections} is considered as estimator for
parameters of the amplitude distribution. Performance of the proposed
\emph{projection} method is demonstrated through simulation study and analysis
of two sets of real radar data.
- Abstract(参考訳): 過去数十年間、$\alpha$-staleディストリビューションのファミリーは、通信システムのモデリングに有用であることが証明されてきた。
特にレーダ応用の場合、振幅密度関数パラメータの高速かつ正確な推定を見つけることは非常に重要であると思われる。
本研究は,振幅分布のパラメータに対して最大極大推定器 (MLE) を提案する。
これを実現するために、振幅データは2つの単純な変換を用いて水平および垂直軸上に \emph{projected} となる。
emph{projected}データは、mleを非常に高速に計算できるゼロロケーション対称な$\alpha$-stale分布に従うことが証明されている。
2つの \emph{projections} に基づく計算されたMLEの平均値は、振幅分布のパラメータの推定器とみなされる。
提案手法の性能は,実レーダデータ2セットのシミュレーション研究と解析によって実証された。
関連論文リスト
- MixLight: Borrowing the Best of both Spherical Harmonics and Gaussian Models [69.39388799906409]
既存の作業では、照明マップを生成したり、照明パラメータを回帰することによって照明を推定する。
本稿では,SHとSGの相補的特性を利用して,より完全な照明表現を実現するジョイントモデルであるMixLightを提案する。
論文 参考訳(メタデータ) (2024-04-19T10:17:10Z) - GPS-Gaussian: Generalizable Pixel-wise 3D Gaussian Splatting for Real-time Human Novel View Synthesis [70.24111297192057]
我々は、文字の新たなビューをリアルタイムに合成するための新しいアプローチ、GPS-Gaussianを提案する。
提案手法は,スパースビューカメラ設定下での2K解像度のレンダリングを可能にする。
論文 参考訳(メタデータ) (2023-12-04T18:59:55Z) - Optimal Algorithms for the Inhomogeneous Spiked Wigner Model [89.1371983413931]
不均一な問題に対する近似メッセージパッシングアルゴリズム(AMP)を導出する。
特に,情報理論の閾値よりも大きい信号と雑音の比を必要とする既知のアルゴリズムが,ランダムよりも優れた処理を行うための統計的・計算的ギャップの存在を同定する。
論文 参考訳(メタデータ) (2023-02-13T19:57:17Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
偏微分方程式モデルにおけるデータ同化とパラメータ推定のためのモデル逆アルゴリズムCKLEMAPを提案する。
CKLEMAP法は標準的なMAP法に比べてスケーラビリティがよい。
論文 参考訳(メタデータ) (2023-01-26T18:14:12Z) - Neural Inference of Gaussian Processes for Time Series Data of Quasars [72.79083473275742]
クエーサースペクトルを完全に記述できる新しいモデルを提案する。
また、$textitNeural Inference$というガウス的プロセスパラメータの推論の新しいメソッドも導入しています。
CDRWモデルとNeural Inferenceの組み合わせはベースラインのDRWとMLEを大きく上回っている。
論文 参考訳(メタデータ) (2022-11-17T13:01:26Z) - Beyond EM Algorithm on Over-specified Two-Component Location-Scale
Gaussian Mixtures [29.26015093627193]
負の対数様関数の曲率を効率的に探索するために,指数位置更新法(ELU)アルゴリズムを開発した。
ELUアルゴリズムは、対数的な反復数の後、モデルの最終的な統計的半径に収束することを示した。
論文 参考訳(メタデータ) (2022-05-23T06:49:55Z) - Fully Adaptive Bayesian Algorithm for Data Analysis, FABADA [0.0]
本稿では,ベイズ推定の観点から,新しい非パラメトリック雑音低減手法について述べる。
データのスムーズなバージョン、スムーズなモデルを繰り返し評価し、基礎となる信号の推定値を得る。
繰り返しは、最後の滑らかなモデルの証拠と$chi2$統計に基づいて停止し、信号の期待値を計算する。
論文 参考訳(メタデータ) (2022-01-13T18:54:31Z) - Gaussian Process Subspace Regression for Model Reduction [7.41244589428771]
部分空間値関数はパラメトリック・リダクション・オーダー・モデリング(PROM)を含む幅広い問題に現れる。
PROM では、各パラメータ点は、大きな系行列のペトロフ・ガレルキン射影に使用される部分空間に関連付けることができる。
本稿では,サブスペース予測のための新しいベイズ非モデルとして,ガウス過程部分空間回帰(GPS)モデルを提案する。
論文 参考訳(メタデータ) (2021-07-09T20:41:23Z) - Gravitational-wave parameter estimation with autoregressive neural
network flows [0.0]
深部ニューラルネットワークを用いた重力波データから二元ブラックホール系のパラメータを高速に推定するための自己回帰正規化フローを導入する。
正規化フロー(英: normalizing flow)は、単純な確率分布からより複雑なものへの変換を誘導するために用いられるサンプル空間上の可逆写像である。
可変オートエンコーダフレームワークに自己回帰フローを組み込むことにより,より強力な潜在変数モデルを構築する。
論文 参考訳(メタデータ) (2020-02-18T15:44:04Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
本稿では、同時局所化およびマッピング(SLAM)におけるマップ間ループ閉包外乱検出のための、新しい分散手法を提案する。
提案アルゴリズムは優れた初期化に頼らず、一度に2つ以上のマップを処理できる。
論文 参考訳(メタデータ) (2020-02-07T06:34:44Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。