論文の概要: A Closer Look at the Self-Verification Abilities of Large Language
Models in Logical Reasoning
- arxiv url: http://arxiv.org/abs/2311.07954v1
- Date: Tue, 14 Nov 2023 07:13:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 15:18:34.184826
- Title: A Closer Look at the Self-Verification Abilities of Large Language
Models in Logical Reasoning
- Title(参考訳): 論理推論における大規模言語モデルの自己検証能力について
- Authors: Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, Changshui Zhang
- Abstract要約: 論理的推論の文脈において,大規模言語モデル(LLM)の自己検証能力について詳しく検討する。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
- 参考スコア(独自算出の注目度): 79.14479982371984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Logical reasoning has been an ongoing pursuit in the field of AI. Despite
significant advancements made by large language models (LLMs), they still
struggle with complex logical reasoning problems. To enhance reasoning
performance, one promising direction is scalable oversight, which requires LLMs
to identify their own errors and then improve by themselves. Various
self-verification methods have been proposed in pursuit of this goal.
Nevertheless, whether existing models understand their own errors well is still
under investigation. In this paper, we take a closer look at the
self-verification abilities of LLMs in the context of logical reasoning,
focusing on their ability to identify logical fallacies accurately. We
introduce a dataset, FALLACIES, containing 232 types of reasoning fallacies
categorized in a hierarchical taxonomy. By conducting exhaustive experiments on
FALLACIES, we obtain comprehensive and detailed analyses of a series of models
on their verification abilities. Our main findings suggest that existing LLMs
could struggle to identify fallacious reasoning steps accurately and may fall
short of guaranteeing the validity of self-verification methods. Drawing from
these observations, we offer suggestions for future research and practical
applications of self-verification methods.
- Abstract(参考訳): 論理的推論は、AIの分野で進行中の追求である。
大きな言語モデル(LLM)による著しい進歩にもかかわらず、複雑な論理的推論問題に苦戦している。
推論性能を高めるために、ある有望な方向性はスケーラブルな監視であり、LSMは自身のエラーを特定し、それ自身で改善する必要がある。
この目的を追求する様々な自己検証手法が提案されている。
それでも、既存のモデルが自身のエラーを十分に理解しているかどうかはまだ調査中である。
本稿では,論理的誤りを正確に識別する能力に着目し,論理的推論の文脈におけるLLMの自己検証能力について詳しく検討する。
階層分類に分類された232種類の推論誤りを含むデータセットFALLACIESを導入する。
仮説を徹底的に実験することにより,検証能力に関する一連のモデルの包括的かつ詳細な分析を行う。
本研究の主目的は,既存のLCMが誤った推論手順を正確に識別するのに苦労し,自己検証法の有効性を保証できないことにある。
これらの観察から, 自己検証手法の今後の研究と実用化に向けての提案を行う。
関連論文リスト
- LogicAsker: Evaluating and Improving the Logical Reasoning Ability of Large Language Models [63.14196038655506]
大規模言語モデル(LLM)の論理的推論能力を評価・拡張するための新しいアプローチであるLogicAskerを紹介する。
提案手法は, LLMが論理規則を学習する際の大きなギャップを明らかにし, 異なるモデル間で29%から90%の推論失敗を識別する。
GPT-4oのようなモデルにおける論理的推論を最大5%向上させることで、これらの知見を活用して、ターゲットとなる実演例と微調整データを構築した。
論文 参考訳(メタデータ) (2024-01-01T13:53:53Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
本稿では,新しいタスク,CLOMO(Counterfactual Logical Modification)と高品質な人間アノテーションベンチマークを紹介する。
このタスクでは、LLMは所定の論理的関係を維持するために、与えられた議論的テキストを順応的に変更しなければなりません。
LLMの自然言語出力を直接評価する革新的な評価指標である自己評価スコア(SES)を提案する。
論文 参考訳(メタデータ) (2023-11-29T08:29:54Z) - Are LLMs Rigorous Logical Reasoner? Empowering Natural Language Proof
Generation with Contrastive Stepwise Decoding [11.385103498440932]
本稿では,論理的推論のためのモデルの能力を高めるために,負の推論経路を用いることにより,ステップワイズな証明生成に対照的な復号を導入する。
EntailmentBankの実験は、言語モデルの計画能力を実証する上で、我々の手法の成功を裏付けている。
論文 参考訳(メタデータ) (2023-11-12T05:12:49Z) - DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy [76.58614128865652]
非決定性から決定性への進化として推論過程を再考する新しい視点であるDetermLRを提案する。
まず、既知の条件を次の2つのタイプに分類する: 決定的および不決定的前提 これは、推論プロセスのオール方向を提供し、不決定的データを段階的決定的洞察に変換する際のLCMを導く。
我々は、利用可能な施設の保存と抽出、推論メモリによる推論パスの自動化、そしてその後の推論ステップに関する歴史的推論の詳細を保存する。
論文 参考訳(メタデータ) (2023-10-28T10:05:51Z) - Assessing Step-by-Step Reasoning against Lexical Negation: A Case Study
on Syllogism [19.590120229602103]
大規模言語モデル(LLM)は、ステップバイステップの推論命令、例えばチェーン・オブ・シント(CoT)プロンプトを利用する。
本研究では, 否定に着目したLCMのステップバイステップ推論能力について検討する。
論文 参考訳(メタデータ) (2023-10-23T12:40:41Z) - Concise and Organized Perception Facilitates Reasoning in Large Language Models [32.71672086718057]
大規模言語モデル (LLM) は, 推論作業における乱雑な内容や無関係な内容を扱う際に, 人間の認知バイアスに類似した障害パターンを示す。
コンシス・アンド・オーガナイズド・パーセプション(COP)という新しい推論手法を提案する。
COPは与えられたステートメントを慎重に分析し、冗長性を効率的に排除しながら、最も関連する情報を識別する。
論文 参考訳(メタデータ) (2023-10-05T04:47:49Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
大規模言語モデル(LLM)は、形式的知識表現(KR)システムの様々な制限を克服する能力を示した。
LLMは誘導的推論において最も優れているが、誘導的推論では最も効果が低い。
モデルの性能を評価するため,シングルタスクトレーニング,マルチタスクトレーニング,および「チェーンオブ思考」知識蒸留細調整技術について検討した。
論文 参考訳(メタデータ) (2023-10-02T01:00:50Z) - Exploring Self-supervised Logic-enhanced Training for Large Language Models [59.227222647741094]
本稿では,自己指導型ポストトレーニングによる論理的知識の活用の可能性について検討する。
我々はMERItの自己回帰的目的変数を考案し、パラメータサイズが30億から13億の2つのLLM系列、すなわちFLAN-T5とLLaMAと統合する。
2つの挑戦的な論理的推論ベンチマークの結果は、LogicLLMの有効性を示している。
論文 参考訳(メタデータ) (2023-05-23T06:13:10Z) - Faithful Reasoning Using Large Language Models [12.132449274592668]
因果構造が問題の根底にある論理構造を反映するプロセスを通じて、LMを忠実な多段階推論を行う方法を示す。
我々の手法は、各ステップが2つの微調整されたLMへの呼び出しから得られる推論ステップをチェーンすることで機能する。
我々は,多段階論理推論と科学的質問応答におけるモデルの有効性を実証し,最終的な解答精度のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-08-30T13:44:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。