論文の概要: Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons
- arxiv url: http://arxiv.org/abs/2311.07955v2
- Date: Wed, 15 Nov 2023 02:38:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 12:38:17.292870
- Title: Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons
- Title(参考訳): 海中無人航空機画像における深層学習に基づく物体検出:レビューと実験的比較
- Authors: Chenjie Zhao, Ryan Wen Liu, Jingxiang Qu, Ruobin Gao
- Abstract要約: まず,海洋UAVにおける物体検出に関する4つの課題,すなわち,対象特性の多様性,デバイス制限,海洋環境の多様性,データセットの不足について要約する。
次に,UAVの航空画像・映像データセットを概観し,MS2ship という海洋UAV航空データセットを船体検出のために提案する。
- 参考スコア(独自算出の注目度): 10.75221614844458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of maritime unmanned aerial vehicles (UAVs) and deep
learning technologies, the application of UAV-based object detection has become
increasingly significant in the fields of maritime industry and ocean
engineering. Endowed with intelligent sensing capabilities, the maritime UAVs
enable effective and efficient maritime surveillance. To further promote the
development of maritime UAV-based object detection, this paper provides a
comprehensive review of challenges, relative methods, and UAV aerial datasets.
Specifically, in this work, we first briefly summarize four challenges for
object detection on maritime UAVs, i.e., object feature diversity, device
limitation, maritime environment variability, and dataset scarcity. We then
focus on computational methods to improve maritime UAV-based object detection
performance in terms of scale-aware, small object detection, view-aware,
rotated object detection, lightweight methods, and others. Next, we review the
UAV aerial image/video datasets and propose a maritime UAV aerial dataset named
MS2ship for ship detection. Furthermore, we conduct a series of experiments to
present the performance evaluation and robustness analysis of object detection
methods on maritime datasets. Eventually, we give the discussion and outlook on
future works for maritime UAV-based object detection. The MS2ship dataset is
available at
\href{https://github.com/zcj234/MS2ship}{https://github.com/zcj234/MS2ship}.
- Abstract(参考訳): 海上無人航空機(UAV)と深層学習技術の進歩により、海洋産業や海洋工学の分野において、UAVに基づく物体検出の応用がますます重要になっている。
インテリジェントなセンシング能力を備えた海洋uavは、効果的で効率的な海上監視を可能にする。
海上におけるUAVによる物体検出の開発をさらに促進するために,課題,相対的手法,UAV航空データセットの総合的なレビューを行う。
具体的には,まず,海洋uavにおける物体検出に関する4つの課題,すなわち,物体特徴の多様性,デバイス制限,海洋環境変動性,データセット不足について概説する。
次に, 海洋uavに基づく物体検出性能を向上させるために, スケールアウェア, 小型物体検出, ビューアウェア, 回転物体検出, 軽量手法などの計算手法に注目した。
次に,UAVの航空画像・映像データセットを概観し,MS2ship という海中UAV航空データセットを提案する。
さらに,海洋データセット上でのオブジェクト検出手法の性能評価とロバスト性解析を行うために,一連の実験を行った。
最終的に、海上UAVによる物体検出の今後の課題と展望について述べる。
MS2shipデータセットは、 \href{https://github.com/zcj234/MS2ship}{https://github.com/zcj234/MS2ship}で入手できる。
関連論文リスト
- Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Ensuring UAV Safety: A Vision-only and Real-time Framework for Collision Avoidance Through Object Detection, Tracking, and Distance Estimation [16.671696289301625]
本稿では,光学センサを用いた非協調航空車両の検出・追跡・距離推定のためのディープラーニングフレームワークを提案する。
本研究では,単眼カメラの入力のみを用いて,検出された空中物体の距離情報をリアルタイムで推定する手法を提案する。
論文 参考訳(メタデータ) (2024-05-10T18:06:41Z) - The 2nd Workshop on Maritime Computer Vision (MaCVi) 2024 [71.80200746293505]
2nd Workshop on Maritime Computer Vision (MaCVi) 2024 address seatime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicles (USV)
論文 参考訳(メタデータ) (2023-11-23T21:01:14Z) - Vision-Based Autonomous Navigation for Unmanned Surface Vessel in
Extreme Marine Conditions [2.8983738640808645]
本稿では,極端海洋環境下での目標物追跡のための自律的視覚に基づくナビゲーション・フレームワークを提案する。
提案手法は砂嵐や霧による可視性低下下でのシミュレーションで徹底的に検証されている。
結果は、ベンチマークしたMBZIRCシミュレーションデータセット全体にわたる最先端のデハージング手法と比較される。
論文 参考訳(メタデータ) (2023-08-08T14:25:13Z) - 1st Workshop on Maritime Computer Vision (MaCVi) 2023: Challenge Results [152.54137779547068]
本報告では、個々のサブチャンジの主な発見を要約し、SeaDronesSee Object Detection v2と呼ばれる新しいベンチマークを導入する。
データセット、評価コード、リーダーボードはhttps://seadronessee.cs.uni-tuebingen.de/macvi.comで公開されている。
論文 参考訳(メタデータ) (2022-11-24T09:59:13Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - Deep Learning for UAV-based Object Detection and Tracking: A Survey [25.34399619170044]
無人航空機(UAV)は最近、コンピュータビジョン(CV)とリモートセンシング(RS)の分野でホットスポットになっている。
近年のディープラーニング(DL)の成功に触発されて、様々なUAV関連タスクに多くの高度な物体検出と追跡アプローチが適用されている。
本稿では, DLを用いたUAV物体検出・追跡手法の研究の進展と今後の展望について概説する。
論文 参考訳(メタデータ) (2021-10-25T04:43:24Z) - Safe Vessel Navigation Visually Aided by Autonomous Unmanned Aerial
Vehicles in Congested Harbors and Waterways [9.270928705464193]
この研究は、従来のRGBカメラと補助的な絶対位置決めシステム(GPSなど)で捉えた長距離視覚データから未知の物体までの距離を検知し推定する最初の試みである。
シミュレーション結果は,UAV支援艦艇の視覚支援航法における提案手法の精度と有効性を示すものである。
論文 参考訳(メタデータ) (2021-08-09T08:15:17Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。