論文の概要: Ship Detection in Remote Sensing Imagery for Arbitrarily Oriented Object Detection
- arxiv url: http://arxiv.org/abs/2503.14534v1
- Date: Mon, 17 Mar 2025 10:49:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-20 15:22:28.145158
- Title: Ship Detection in Remote Sensing Imagery for Arbitrarily Oriented Object Detection
- Title(参考訳): 任意指向物体検出のためのリモートセンシング画像中の船舶検出
- Authors: Bibi Erum Ayesha, T. Satyanarayana Murthy, Palamakula Ramesh Babu, Ramu Kuchipudi,
- Abstract要約: 本研究では,海洋モニタリングや生態モニタリングなどの応用に適した,革新的な船舶検知システムを提案する。
YOLOv8と2つの高度なディープラーニングモデルであるU-Netを用いて、船舶検出精度を大幅に向上させる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This research paper presents an innovative ship detection system tailored for applications like maritime surveillance and ecological monitoring. The study employs YOLOv8 and repurposed U-Net, two advanced deep learning models, to significantly enhance ship detection accuracy. Evaluation metrics include Mean Average Precision (mAP), processing speed, and overall accuracy. The research utilizes the "Airbus Ship Detection" dataset, featuring diverse remote sensing images, to assess the models' versatility in detecting ships with varying orientations and environmental contexts. Conventional ship detection faces challenges with arbitrary orientations, complex backgrounds, and obscured perspectives. Our approach incorporates YOLOv8 for real-time processing and U-Net for ship instance segmentation. Evaluation focuses on mAP, processing speed, and overall accuracy. The dataset is chosen for its diverse images, making it an ideal benchmark. Results demonstrate significant progress in ship detection. YOLOv8 achieves an 88% mAP, excelling in accurate and rapid ship detection. U Net, adapted for ship instance segmentation, attains an 89% mAP, improving boundary delineation and handling occlusions. This research enhances maritime surveillance, disaster response, and ecological monitoring, exemplifying the potential of deep learning models in ship detection.
- Abstract(参考訳): 本研究では,海洋モニタリングや生態モニタリングなどの応用に適した,革新的な船舶検知システムを提案する。
YOLOv8と2つの高度なディープラーニングモデルであるU-Netを用いて、船舶検出精度を大幅に向上させる。
評価指標には平均精度(mAP)、処理速度、全体的な精度などがある。
この研究は、多様なリモートセンシング画像を特徴とする"Airbus Ship Detection"データセットを使用して、様々な方向と環境条件で船舶を検出する際のモデルの汎用性を評価する。
従来の船舶検出は、任意の方向、複雑な背景、曖昧な視点で課題に直面している。
本手法では, リアルタイム処理にYOLOv8, 出荷インスタンスセグメンテーションにU-Netを導入している。
評価は、mAP、処理速度、全体的な精度に重点を置いている。
データセットは多様な画像に対して選択され、理想的なベンチマークとなる。
以上の結果から, 船舶発見の進展が示唆された。
YOLOv8は88%のmAPを達成した。
UNetは、船のインスタンスセグメンテーションに適合し、89%のmAPを獲得し、バウンダリデラインを改善し、オクルージョンを処理する。
本研究は海上監視,災害応答,生態モニタリングを強化し,船舶検出における深層学習モデルの可能性を実証する。
関連論文リスト
- Image and AIS Data Fusion Technique for Maritime Computer Vision
Applications [1.482087972733629]
本研究では,AIS(Automatic Identification System)データと画像に検出された容器を融合させてデータセットを作成する手法を開発した。
提案手法は, 距離と方位を推定することにより, 検出した船舶を対応するAISメッセージに関連付ける。
この技術は、水路交通管理、遭遇検知、監視のためのデータセットを作成するのに有用である。
論文 参考訳(メタデータ) (2023-12-07T20:54:49Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Deep Learning-Based Object Detection in Maritime Unmanned Aerial Vehicle
Imagery: Review and Experimental Comparisons [10.75221614844458]
まず,海洋UAVにおける物体検出に関する4つの課題,すなわち,対象特性の多様性,デバイス制限,海洋環境の多様性,データセットの不足について要約する。
次に,UAVの航空画像・映像データセットを概観し,MS2ship という海洋UAV航空データセットを船体検出のために提案する。
論文 参考訳(メタデータ) (2023-11-14T07:20:38Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - SOOD: Towards Semi-Supervised Oriented Object Detection [57.05141794402972]
本稿では, 主流の擬似ラベリングフレームワーク上に構築された, SOOD と呼ばれる, 半教師付きオブジェクト指向物体検出モデルを提案する。
提案した2つの損失をトレーニングした場合,SOODはDOTA-v1.5ベンチマークの様々な設定下で,最先端のSSOD法を超越することを示した。
論文 参考訳(メタデータ) (2023-04-10T11:10:42Z) - Rethinking Drone-Based Search and Rescue with Aerial Person Detection [79.76669658740902]
航空ドローンの映像の視覚検査は、現在土地捜索救助(SAR)活動に不可欠な部分である。
本稿では,この空中人物検出(APD)タスクを自動化するための新しいディープラーニングアルゴリズムを提案する。
本稿では,Aerial Inspection RetinaNet (AIR) アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2021-11-17T21:48:31Z) - MODS -- A USV-oriented object detection and obstacle segmentation
benchmark [12.356257470551348]
海上物体検出とより一般的な海上障害物セグメンテーションの2つの主要な知覚タスクを考慮する新しい障害物検出ベンチマークMODSを紹介します。
船載IMUと同期する約81kのステレオ画像と60k以上の物体を注釈付けした新たな海洋評価データセットを提案する。
実用的なUSVナビゲーションに有用な方法で検出精度を反映した新しい障害物分割性能評価プロトコルを提案する。
論文 参考訳(メタデータ) (2021-05-05T22:40:27Z) - Arbitrary-Oriented Ship Detection through Center-Head Point Extraction [11.45718985586972]
リモートセンシング画像における任意方向の船舶検出を実現するために,センターヘッドポイント抽出ベース検出器(CHPDet)を提案する。
私たちのCHPDetは、方向を決定するために使用されるヘッドポイントを持つ回転箱として任意の向きの船を定式化します。
我々のCHPDetは最先端の性能を達成し、弓と船尾をよく区別できる。
論文 参考訳(メタデータ) (2021-01-27T03:58:52Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - A Novel CNN-based Method for Accurate Ship Detection in HR Optical
Remote Sensing Images via Rotated Bounding Box [10.689750889854269]
船舶検出における現在のCNN法に共通する欠点を克服し, 新たなCNNに基づく船舶検出手法を提案する。
配向と他の変数を独立に予測できるが、より効果的に、新しい二分岐回帰ネットワークで予測できる。
船体検出において提案手法が優れていることを示す実験結果が得られた。
論文 参考訳(メタデータ) (2020-04-15T14:48:46Z) - Real-Time target detection in maritime scenarios based on YOLOv3 model [65.35132992156942]
ウェブスクレイピングによって収集された56k以上の海洋船舶の画像からなる、新しい船舶データセットが提案されている。
Keras APIをベースとしたYOLOv3シングルステージ検出器がこのデータセット上に構築されている。
論文 参考訳(メタデータ) (2020-02-10T15:25:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。