論文の概要: AfroBench: How Good are Large Language Models on African Languages?
- arxiv url: http://arxiv.org/abs/2311.07978v4
- Date: Thu, 06 Mar 2025 13:29:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-07 15:56:54.889992
- Title: AfroBench: How Good are Large Language Models on African Languages?
- Title(参考訳): AfroBench: アフリカの言語上での大規模言語モデルはどの程度優れているか?
- Authors: Jessica Ojo, Odunayo Ogundepo, Akintunde Oladipo, Kelechi Ogueji, Jimmy Lin, Pontus Stenetorp, David Ifeoluwa Adelani,
- Abstract要約: AfroBenchは、64のアフリカ言語にわたるLLMのパフォーマンスを評価するためのベンチマークである。
AfroBenchは9つの自然言語理解データセット、6つのテキスト生成データセット、6つの知識と質問応答タスク、1つの数学的推論タスクで構成される。
- 参考スコア(独自算出の注目度): 55.35674466745322
- License:
- Abstract: Large-scale multilingual evaluations, such as MEGA, often include only a handful of African languages due to the scarcity of high-quality evaluation data and the limited discoverability of existing African datasets. This lack of representation hinders comprehensive LLM evaluation across a diverse range of languages and tasks. To address these challenges, we introduce AfroBench -- a multi-task benchmark for evaluating the performance of LLMs across 64 African languages, 15 tasks and 22 datasets. AfroBench consists of nine natural language understanding datasets, six text generation datasets, six knowledge and question answering tasks, and one mathematical reasoning task. We present results comparing the performance of prompting LLMs to fine-tuned baselines based on BERT and T5-style models. Our results suggest large gaps in performance between high-resource languages, such as English, and African languages across most tasks; but performance also varies based on the availability of monolingual data resources. Our findings confirm that performance on African languages continues to remain a hurdle for current LLMs, underscoring the need for additional efforts to close this gap. https://mcgill-nlp.github.io/AfroBench/
- Abstract(参考訳): MEGAのような大規模多言語評価は、高品質な評価データの不足と既存のアフリカのデータセットの発見可能性に制限があるため、少数のアフリカ言語しか含まないことが多い。
この表現の欠如は、様々な言語やタスクにわたる総合的なLCM評価を妨げる。
これらの課題に対処するために、AfroBenchを紹介した。AfroBenchは、64のアフリカ言語、15のタスク、22のデータセットにわたるLLMのパフォーマンスを評価するマルチタスクベンチマークである。
AfroBenchは9つの自然言語理解データセット、6つのテキスト生成データセット、6つの知識と質問応答タスク、1つの数学的推論タスクで構成される。
BERTモデルとT5スタイルモデルに基づいて,LLMを微調整したベースラインと比較した。
結果から,英語やアフリカ語などの高リソース言語では,ほとんどのタスクにおいて性能の差が大きいことが示唆されるが,単言語データリソースの可用性にもとづく性能も異なる。
このギャップを埋めるための追加の努力の必要性を裏付けるものとして,アフリカの言語のパフォーマンスが現在のLLMのハードルであり続けていることが確認された。
https://mcgill-nlp.github.io/AfroBench/
関連論文リスト
- Enhancing Code Generation for Low-Resource Languages: No Silver Bullet [55.39571645315926]
大規模言語モデル(LLM)は、プログラミング言語の構文、意味論、使用パターンを学ぶために、大規模で多様なデータセットに依存している。
低リソース言語では、そのようなデータの限られた可用性は、モデルを効果的に一般化する能力を損なう。
本稿では,低リソース言語におけるLLMの性能向上のためのいくつかの手法の有効性を実証研究する。
論文 参考訳(メタデータ) (2025-01-31T12:23:28Z) - Bridging the Gap: Enhancing LLM Performance for Low-Resource African Languages with New Benchmarks, Fine-Tuning, and Cultural Adjustments [0.9214083577876088]
本稿では,8つの低リソースアフリカ言語において,約100万の人文翻訳語を新たにベンチマークデータとして生成する。
我々のベンチマークはウィノグランデの翻訳とMMLUの3つのセクション(大学医学、臨床知識、ウイルス学)である。
翻訳されたベンチマークを用いて、英語とアフリカ語におけるSOTA(State-of-the-art LLM)のパフォーマンスギャップについて報告する。
論文 参考訳(メタデータ) (2024-12-16T23:50:21Z) - Do Large Language Models Speak All Languages Equally? A Comparative Study in Low-Resource Settings [12.507989493130175]
大規模言語モデル (LLM) は自然言語処理 (NLP) に大きな関心を寄せている。
近年の研究では、低リソース言語におけるLLMの限界が強調されている。
英語からバングラ語、ヒンディー語、ウルドゥー語に翻訳することで、感情と憎悪の音声タスクのデータセットを提示する。
論文 参考訳(メタデータ) (2024-08-05T05:09:23Z) - IrokoBench: A New Benchmark for African Languages in the Age of Large Language Models [18.083861654053585]
IrokoBenchは17の原型的に異なる低リソースのアフリカ言語のための人間翻訳ベンチマークデータセットである。
IrokoBenchを使って、10のオープンおよび6つのプロプライエタリ言語モデルでゼロショット、少数ショット、および翻訳テストの設定(テストセットを英語に翻訳する)を評価します。
オープンモデルとプロプライエタリモデルの間には大きなパフォーマンスギャップがあり、最高パフォーマンスのオープンモデルであるGemma 2 27Bは、最高のパフォーマンスのプロプライエタリモデルであるGPT-4oのパフォーマンスの63%に過ぎません。
論文 参考訳(メタデータ) (2024-06-05T15:23:08Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
本稿では, マルチリンガル数学推論 (xMR) LLM の探索と学習の先駆者である。
我々は10の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
翻訳を利用して、10個の異なる言語を含む最初の多言語数学推論命令データセットMGSM8KInstructを構築した。
論文 参考訳(メタデータ) (2023-10-31T08:09:20Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - How Good are Commercial Large Language Models on African Languages? [0.012691047660244334]
本研究では,8つのアフリカの言語を対象とした2つのタスク(機械翻訳とテキスト分類)における商業的大規模言語モデルの予備的分析を行う。
この結果から, 商業言語モデルがアフリカ語で低水準のパフォーマンスを生んでいることが示唆された。
一般論として,アフリカの言語が商業的な大規模言語モデルでよく表現されていることを保証するために,我々の研究成果はコール・ツー・アクションとして提示される。
論文 参考訳(メタデータ) (2023-05-11T02:29:53Z) - Crosslingual Generalization through Multitask Finetuning [80.8822603322471]
マルチタスク誘導ファインタニング(MTF)は、大きな言語モデルがゼロショット設定で新しいタスクに一般化するのに役立つことが示されている。
MTFを事前訓練された多言語BLOOMおよびmT5モデルファミリーに適用し、BLOOMZおよびmT0と呼ばれる微調整された変種を生成する。
英語のプロンプトを用いた英語タスクにおける多言語多言語モデルの微調整により、非英語言語へのタスク一般化が可能となる。
論文 参考訳(メタデータ) (2022-11-03T13:19:32Z) - MasakhaNER 2.0: Africa-centric Transfer Learning for Named Entity
Recognition [55.95128479289923]
アフリカ系言語は10億人を超える人々によって話されているが、NLPの研究や開発ではあまり語られていない。
我々は、20のアフリカ言語で最大の人間アノテーション付きNERデータセットを作成します。
最適な転送言語を選択すると、ゼロショットF1スコアが平均14ポイント向上することを示す。
論文 参考訳(メタデータ) (2022-10-22T08:53:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。