LiPar: A Lightweight Parallel Learning Model for Practical In-Vehicle Network Intrusion Detection
- URL: http://arxiv.org/abs/2311.08000v2
- Date: Sat, 21 Dec 2024 03:03:07 GMT
- Title: LiPar: A Lightweight Parallel Learning Model for Practical In-Vehicle Network Intrusion Detection
- Authors: Aiheng Zhang, Qiguang Jiang, Kai Wang, Ming Li,
- Abstract summary: We propose a lightweight parallel neural network structure, LiPar, which achieve enhanced generalization capability for in-vehicle intrusion detection.<n>LiPar adaptationally allocates task loads to in-vehicle computing devices, such as multiple electronic control units, domain controllers, computing gateways.<n>We prove that LiPar has great detection performance, running efficiency, and lightweight model size, which can be well adapted to the in-vehicle environment practically and protect the in-vehicle CAN bus security.
- Score: 9.424132584616288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of intelligent transportation systems, vehicles are exposed to a complex network environment. As the main network of in-vehicle networks, the controller area network (CAN) has many potential security hazards, resulting in higher generalization capability and lighter security requirements for intrusion detection systems to ensure safety. Among intrusion detection technologies, methods based on deep learning work best without prior expert knowledge. However, they all have a large model size and usually rely on large computing power such as cloud computing, and are therefore not suitable to be installed on the in-vehicle network. Therefore, we explore computational resource allocation schemes in in-vehicle network and propose a lightweight parallel neural network structure, LiPar, which achieve enhanced generalization capability for identifying normal and abnormal patterns of in-vehicle communication flows to achieve effective intrusion detection while improving the utilization of limited computing resources. In particular, LiPar adaptationally allocates task loads to in-vehicle computing devices, such as multiple electronic control units, domain controllers, computing gateways through evaluates whether a computing device is suitable to undertake the branch computing tasks according to its real-time resource occupancy. Through experiments, we prove that LiPar has great detection performance, running efficiency, and lightweight model size, which can be well adapted to the in-vehicle environment practically and protect the in-vehicle CAN bus security. Furthermore, with only the common multi-dimensional branch convolution networks for detection, LiPar can have a high potential for generalization in spatial and temporal feature fusion learning.
Related papers
- Evaluating Low-Resource Lane Following Algorithms for Compute-Constrained Automated Vehicles [0.3179433314782644]
We evaluate five low-resource lane-following algorithms for real-time operation on vehicles with limited computing resources.
Top-performing methods used unsupervised learning to detect and separate lane lines with processing time under 10 ms per frame.
Findings highlight the potential for efficient lane detection approaches to enhance the accessibility and reliability of autonomous vehicle technologies.
arXiv Detail & Related papers (2024-09-04T22:39:02Z) - Building Hybrid B-Spline And Neural Network Operators [0.0]
Control systems are indispensable for ensuring the safety of cyber-physical systems (CPS)
We propose a novel strategy that combines the inductive bias of B-splines with data-driven neural networks to facilitate real-time predictions of CPS behavior.
arXiv Detail & Related papers (2024-06-06T21:54:59Z) - FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
Federated learning is a promising solution to train sophisticated machine learning models in vehicular networks.
We introduce FedPylot, a lightweight MPI-based prototype to simulate federated object detection experiments.
Our study factors in accuracy, communication cost, and inference speed, thereby presenting a balanced approach to the challenges faced by autonomous vehicles.
arXiv Detail & Related papers (2024-06-05T20:06:59Z) - RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility [35.04722426910211]
Urban Air Mobility (UAM) expands vehicles from the ground to the near-ground space, envisioned as a revolution in transportation systems.
To overcome the challenge, federated learning (FL) and other collaborative learning have been proposed to enable resource-limited devices to conduct onboard deep learning (DL) collaboratively.
This paper explores reconfigurable intelligent surfaces (RIS) empowered distributed learning, taking account of topological attributes to facilitate the learning performance with convergence guarantee.
arXiv Detail & Related papers (2024-03-08T08:05:50Z) - Exploring Highly Quantised Neural Networks for Intrusion Detection in
Automotive CAN [13.581341206178525]
Machine learning-based intrusion detection models have been shown to successfully detect multiple targeted attack vectors.
In this paper, we present a case for custom-quantised literature (CQMLP) as a multi-class classification model.
We show that the 2-bit CQMLP model, when integrated as the IDS, can detect malicious attack messages with a very high accuracy of 99.9%.
arXiv Detail & Related papers (2024-01-19T21:11:02Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
Object detection is one of the key technologies in the Internet of Vehicles (IoV)
Current object detection methods are mostly based on centralized deep training, that is, the sensitive data obtained by edge devices need to be uploaded to the server.
We propose a federated learning-based framework, where well-trained local models are shared in the central server.
arXiv Detail & Related papers (2023-09-07T08:58:41Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
Anomaly Detection [0.0]
unsupervised anomaly-based deep learning detection system called ARCADE.
A convolutional Autoencoder (AE) is proposed that suits online detection in resource-constrained environments.
arXiv Detail & Related papers (2022-05-03T11:47:36Z) - High Efficiency Pedestrian Crossing Prediction [0.0]
State-of-the-art methods in predicting pedestrian crossing intention often rely on multiple streams of information as inputs.
We introduce a network with only frames of pedestrians as the input.
Experiments validate that our model consistently delivers outstanding performances.
arXiv Detail & Related papers (2022-04-04T21:37:57Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Characterization of Neural Networks Automatically Mapped on
Automotive-grade Microcontrollers [0.0]
We present a framework for implementing Neural Network-based models on a family of automotive Microcontrollers.
In this paper, we show their efficiency in two case studies applied to vehicles: intrusion detection on the Controller Area Network bus and residual capacity estimation in Lithium-Ion batteries.
arXiv Detail & Related papers (2021-02-27T12:16:50Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - Binary DAD-Net: Binarized Driveable Area Detection Network for
Autonomous Driving [94.40107679615618]
This paper proposes a novel binarized driveable area detection network (binary DAD-Net)
It uses only binary weights and activations in the encoder, the bottleneck, and the decoder part.
It outperforms state-of-the-art semantic segmentation networks on public datasets.
arXiv Detail & Related papers (2020-06-15T07:09:01Z) - Automatic Perturbation Analysis for Scalable Certified Robustness and
Beyond [171.07853346630057]
Linear relaxation based perturbation analysis (LiRPA) for neural networks has become a core component in robustness verification and certified defense.
We develop an automatic framework to enable perturbation analysis on any neural network structures.
We demonstrate LiRPA based certified defense on Tiny ImageNet and Downscaled ImageNet.
arXiv Detail & Related papers (2020-02-28T18:47:43Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.