RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility
- URL: http://arxiv.org/abs/2403.05133v1
- Date: Fri, 8 Mar 2024 08:05:50 GMT
- Title: RIS-empowered Topology Control for Distributed Learning in Urban Air
Mobility
- Authors: Kai Xiong, Rui Wang, Supeng Leng, Wenyang Che, Chongwen Huang, Chau
Yuen
- Abstract summary: Urban Air Mobility (UAM) expands vehicles from the ground to the near-ground space, envisioned as a revolution in transportation systems.
To overcome the challenge, federated learning (FL) and other collaborative learning have been proposed to enable resource-limited devices to conduct onboard deep learning (DL) collaboratively.
This paper explores reconfigurable intelligent surfaces (RIS) empowered distributed learning, taking account of topological attributes to facilitate the learning performance with convergence guarantee.
- Score: 35.04722426910211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban Air Mobility (UAM) expands vehicles from the ground to the near-ground
space, envisioned as a revolution for transportation systems. Comprehensive
scene perception is the foundation for autonomous aerial driving. However, UAM
encounters the intelligent perception challenge: high perception learning
requirements conflict with the limited sensors and computing chips of flying
cars. To overcome the challenge, federated learning (FL) and other
collaborative learning have been proposed to enable resource-limited devices to
conduct onboard deep learning (DL) collaboratively. But traditional
collaborative learning like FL relies on a central integrator for DL model
aggregation, which is difficult to deploy in dynamic environments. The fully
decentralized learning schemes may be the intuitive solution while the
convergence of distributed learning cannot be guaranteed. Accordingly, this
paper explores reconfigurable intelligent surfaces (RIS) empowered distributed
learning, taking account of topological attributes to facilitate the learning
performance with convergence guarantee. We propose several FL topological
criteria for optimizing the transmission delay and convergence rate by
exploiting the Laplacian matrix eigenvalues of the communication network.
Subsequently, we innovatively leverage the RIS link modification ability to
remold the current network according to the proposed topological criteria. This
paper rethinks the functions of RIS from the perspective of the network layer.
Furthermore, a deep deterministic policy gradient-based RIS phase shift control
algorithm is developed to construct or deconstruct the network links
simultaneously to reshape the communication network. Simulation experiments are
conducted over MobileNet-based multi-view learning to verify the efficiency of
the distributed FL framework.
Related papers
- Model Partition and Resource Allocation for Split Learning in Vehicular Edge Networks [24.85135243655983]
This paper proposes a novel U-shaped split federated learning (U-SFL) framework to address these challenges.
U-SFL is able to enhance privacy protection by keeping both raw data and labels on the vehicular user (VU) side.
To optimize communication efficiency, we introduce a semantic-aware auto-encoder (SAE) that significantly reduces the dimensionality of transmitted data.
arXiv Detail & Related papers (2024-11-11T07:59:13Z) - Learning Decentralized Traffic Signal Controllers with Multi-Agent Graph
Reinforcement Learning [42.175067773481416]
We design a new decentralized control architecture with improved environmental observability to capture the spatial-temporal correlation.
Specifically, we first develop a topology-aware information aggregation strategy to extract correlation-related information from unstructured data gathered in the road network.
A diffusion convolution module is developed, forming a new MARL algorithm, which endows agents with the capabilities of graph learning.
arXiv Detail & Related papers (2023-11-07T06:43:15Z) - Over-the-Air Federated Learning and Optimization [52.5188988624998]
We focus on Federated learning (FL) via edge-the-air computation (AirComp)
We describe the convergence of AirComp-based FedAvg (AirFedAvg) algorithms under both convex and non- convex settings.
For different types of local updates that can be transmitted by edge devices (i.e., model, gradient, model difference), we reveal that transmitting in AirFedAvg may cause an aggregation error.
In addition, we consider more practical signal processing schemes to improve the communication efficiency and extend the convergence analysis to different forms of model aggregation error caused by these signal processing schemes.
arXiv Detail & Related papers (2023-10-16T05:49:28Z) - Vertical Federated Learning over Cloud-RAN: Convergence Analysis and
System Optimization [82.12796238714589]
We propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation.
We characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions.
We establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed.
arXiv Detail & Related papers (2023-05-04T09:26:03Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
Federated learning empowered connected autonomous vehicle (FLCAV) has been proposed.
FLCAV preserves privacy while reducing communication and annotation costs.
It is challenging to determine the network resources and road sensor poses for multi-stage training.
arXiv Detail & Related papers (2022-06-03T23:55:45Z) - Differentially Private Federated Learning via Reconfigurable Intelligent
Surface [27.004823731436765]
Federated learning (FL) enables the collaborative training of a global model over decentralized local datasets without sharing them.
We propose a reconfigurable intelligent surface (RIS) empowered over-the-air FL system to alleviate the dilemma between learning accuracy and privacy.
arXiv Detail & Related papers (2022-03-31T13:45:02Z) - UAV-Aided Decentralized Learning over Mesh Networks [23.612400109629544]
Decentralized learning empowers wireless network devices to collaboratively train a machine learning (ML) model relying solely on device-to-device (D2D) communication.
Local connectivity of real world mesh networks, due to the limited communication range of its wireless nodes, undermines the efficiency of decentralized learning protocols.
We propose an optimized UAV trajectory, that is defined as a sequence of waypoints that the UAV visits sequentially in order to transfer intelligence across sparsely connected group of users.
arXiv Detail & Related papers (2022-03-02T10:39:40Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
Federated learning (FL) as a paradigm of collaborative learning techniques has obtained increasing research attention.
It is of interest to investigate fast responding and accurate FL schemes over wireless systems.
We show that the proposed communication-efficient federated learning framework converges at a strong linear rate.
arXiv Detail & Related papers (2021-10-22T13:25:57Z) - Graph Neural Network Reinforcement Learning for Autonomous
Mobility-on-Demand Systems [42.08603087208381]
We argue that the AMoD control problem is naturally cast as a node-wise decision-making problem.
We propose a deep reinforcement learning framework to control the rebalancing of AMoD systems through graph neural networks.
We show how the learned policies exhibit promising zero-shot transfer capabilities when faced with critical portability tasks.
arXiv Detail & Related papers (2021-04-23T06:42:38Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.