論文の概要: Data-driven building energy efficiency prediction using physics-informed neural networks
- arxiv url: http://arxiv.org/abs/2311.08035v2
- Date: Thu, 25 Apr 2024 15:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 23:37:50.376400
- Title: Data-driven building energy efficiency prediction using physics-informed neural networks
- Title(参考訳): 物理インフォームドニューラルネットワークを用いたデータ駆動建築エネルギー効率予測
- Authors: Vasilis Michalakopoulos, Sotiris Pelekis, Giorgos Kormpakis, Vagelis Karakolis, Spiros Mouzakitis, Dimitris Askounis,
- Abstract要約: 住宅のエネルギー性能を予測するための物理インフォームドニューラルネットワークモデルを提案する。
物理方程式に基づく関数は、熱損失に基づいて建物のエネルギー消費を計算し、深層学習モデルの損失関数を強化する。
この手法はラトビアのリガにある256の建物の実例調査で検証されている。
- 参考スコア(独自算出の注目度): 2.572906392867547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The analytical prediction of building energy performance in residential buildings based on the heat losses of its individual envelope components is a challenging task. It is worth noting that this field is still in its infancy, with relatively limited research conducted in this specific area to date, especially when it comes for data-driven approaches. In this paper we introduce a novel physics-informed neural network model for addressing this problem. Through the employment of unexposed datasets that encompass general building information, audited characteristics, and heating energy consumption, we feed the deep learning model with general building information, while the model's output consists of the structural components and several thermal properties that are in fact the basic elements of an energy performance certificate (EPC). On top of this neural network, a function, based on physics equations, calculates the energy consumption of the building based on heat losses and enhances the loss function of the deep learning model. This methodology is tested on a real case study for 256 buildings located in Riga, Latvia. Our investigation comes up with promising results in terms of prediction accuracy, paving the way for automated, and data-driven energy efficiency performance prediction based on basic properties of the building, contrary to exhaustive energy efficiency audits led by humans, which are the current status quo.
- Abstract(参考訳): 個別の封筒成分の熱損失に基づく住宅における建築エネルギー性能の予測は難しい課題である。
この分野はまだ初期段階であり、特にデータ駆動アプローチに関して、この特定領域ではこれまで比較的限られた研究がなされている点に注意が必要だ。
本稿では,この問題に対処するための新しい物理インフォームドニューラルネットワークモデルを提案する。
一般ビルディング情報,監査特性,暖房エネルギー消費を含む未公開データセットの利用を通じて,ディープラーニングモデルに一般ビルディング情報を提供する一方,モデル出力は構造成分と実際にエネルギー性能証明(EPC)の基本要素であるいくつかの熱特性から構成される。
このニューラルネットワークの上に、物理方程式に基づく関数が、熱損失に基づいて建物のエネルギー消費を計算し、ディープラーニングモデルの損失関数を強化する。
この手法は、ラトビアのリガにある256の建物の実例調査で検証されている。
本研究は,人間の主導によるエネルギー効率監査とは対照的に,建物の基本特性に基づいて,予測精度,自動化方法,およびデータ駆動型エネルギー効率性能の予測を行う上で有望な結果が得られた。
関連論文リスト
- The Forecastability of Underlying Building Electricity Demand from Time
Series Data [1.3757257689932039]
ビルのエネルギー消費予測は、ビルのエネルギー管理システムにおいて有望な解決策となっている。
建物の将来的なエネルギー需要を予測するデータ駆動のアプローチは、科学文献で見ることができる。
このような建物のエネルギー需要を予測するために利用できる最も正確な予測モデルの同定は依然として困難である。
論文 参考訳(メタデータ) (2023-11-29T20:47:47Z) - Application of Zone Method based Physics-Informed Neural Networks in
Reheating Furnaces [25.031487600209346]
ファウンデーション・インダストリーズ(FIs)はガラス、金属、セメント、セラミックス、バルク化学、紙、鋼などを構成する。
FIの製造チェーン内の再加熱炉はエネルギー集約的である。
再加熱炉の地下温度の正確なリアルタイム予測は、全体の加熱時間を短縮する可能性がある。
本稿では,新しいエネルギーベース正規化器を用いた物理知識を取り入れた物理インフォームドニューラルネットワーク(PINN)を提案する。
論文 参考訳(メタデータ) (2023-08-30T15:26:35Z) - Computation-efficient Deep Learning for Computer Vision: A Survey [121.84121397440337]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。
ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。
新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (2023-08-27T03:55:28Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Energy Efficiency of Training Neural Network Architectures: An Empirical
Study [11.325530936177493]
ディープラーニングモデルの評価は、伝統的に精度、F1スコア、関連する指標などの基準に焦点を当ててきた。
このようなモデルを訓練するために必要な計算は、大きな炭素フットプリントを必要とする。
本研究では, DLモデルアーキテクチャと環境影響との関係を, エネルギー消費の観点から検討した。
論文 参考訳(メタデータ) (2023-02-02T09:20:54Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Physics Informed Neural Networks for Control Oriented Thermal Modeling
of Buildings [3.1132272756008375]
本稿では,建物の制御指向熱モデル構築のためのデータ駆動型モデリング手法を提案する。
測定データと構築パラメータとともに、これらの建物の熱的挙動を管理する基礎となる物理でニューラルネットワークを符号化する。
論文 参考訳(メタデータ) (2021-11-23T18:27:54Z) - On Energy-Based Models with Overparametrized Shallow Neural Networks [44.74000986284978]
エネルギーベースモデル(EBM)は、ジェネレーションモデリングの強力なフレームワークです。
この研究では、浅いニューラルネットワークに焦点を当てます。
我々は、いわゆる「アクティブ」体制で訓練されたモデルが、関連する「怠慢」またはカーネル体制に対して統計的に有利であることを示す。
論文 参考訳(メタデータ) (2021-04-15T15:34:58Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
建物における省エネルギーと二酸化炭素排出量削減は気候変動対策の鍵となる手段の一つである。
シラーシステムの電力消費の最適化は、機械工学と建築サービス領域で広く研究されてきた。
ビッグデータとAIの進歩により、最適化問題への機械学習の採用が人気を集めている。
論文 参考訳(メタデータ) (2020-10-09T09:51:03Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。