MVSA-Net: Multi-View State-Action Recognition for Robust and Deployable Trajectory Generation
- URL: http://arxiv.org/abs/2311.08393v3
- Date: Mon, 8 Apr 2024 02:57:55 GMT
- Title: MVSA-Net: Multi-View State-Action Recognition for Robust and Deployable Trajectory Generation
- Authors: Ehsan Asali, Prashant Doshi, Jin Sun,
- Abstract summary: The learn-from-observation (LfO) paradigm is a human-inspired mode for a robot to learn to perform a task simply by watching it being performed.
We present multi-view SA-Net, which generalizes the SA-Net model to allow the perception of multiple viewpoints of the task activity.
- Score: 6.032808648673282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The learn-from-observation (LfO) paradigm is a human-inspired mode for a robot to learn to perform a task simply by watching it being performed. LfO can facilitate robot integration on factory floors by minimizing disruption and reducing tedious programming. A key component of the LfO pipeline is a transformation of the depth camera frames to the corresponding task state and action pairs, which are then relayed to learning techniques such as imitation or inverse reinforcement learning for understanding the task parameters. While several existing computer vision models analyze videos for activity recognition, SA-Net specifically targets robotic LfO from RGB-D data. However, SA-Net and many other models analyze frame data captured from a single viewpoint. Their analysis is therefore highly sensitive to occlusions of the observed task, which are frequent in deployments. An obvious way of reducing occlusions is to simultaneously observe the task from multiple viewpoints and synchronously fuse the multiple streams in the model. Toward this, we present multi-view SA-Net, which generalizes the SA-Net model to allow the perception of multiple viewpoints of the task activity, integrate them, and better recognize the state and action in each frame. Performance evaluations on two distinct domains establish that MVSA-Net recognizes the state-action pairs under occlusion more accurately compared to single-view MVSA-Net and other baselines. Our ablation studies further evaluate its performance under different ambient conditions and establish the contribution of the architecture components. As such, MVSA-Net offers a significantly more robust and deployable state-action trajectory generation compared to previous methods.
Related papers
- SAM-E: Leveraging Visual Foundation Model with Sequence Imitation for Embodied Manipulation [62.58480650443393]
Segment Anything (SAM) is a vision-foundation model for generalizable scene understanding and sequence imitation.
We develop a novel multi-channel heatmap that enables the prediction of the action sequence in a single pass.
arXiv Detail & Related papers (2024-05-30T00:32:51Z) - Bridging Language, Vision and Action: Multimodal VAEs in Robotic Manipulation Tasks [0.0]
In this work, we focus on unsupervised vision-language--action mapping in the area of robotic manipulation.
We propose a model-invariant training alternative that improves the models' performance in a simulator by up to 55%.
Our work thus also sheds light on the potential benefits and limitations of using the current multimodal VAEs for unsupervised learning of robotic motion trajectories.
arXiv Detail & Related papers (2024-04-02T13:25:16Z) - Analyzing Local Representations of Self-supervised Vision Transformers [34.56680159632432]
We present a comparative analysis of various self-supervised Vision Transformers (ViTs)
Inspired by large language models, we examine the abilities of ViTs to perform various computer vision tasks with little to no fine-tuning.
arXiv Detail & Related papers (2023-12-31T11:38:50Z) - Jack of All Tasks, Master of Many: Designing General-purpose Coarse-to-Fine Vision-Language Model [83.85856356798531]
VistaLLM is a visual system that addresses coarse- and fine-grained vision-language tasks.
It employs a gradient-aware adaptive sampling technique to represent binary segmentation masks as sequences.
We also introduce a novel task, AttCoSeg, which boosts the model's reasoning and grounding capability over multiple input images.
arXiv Detail & Related papers (2023-12-19T18:53:01Z) - Joint Depth Prediction and Semantic Segmentation with Multi-View SAM [59.99496827912684]
We propose a Multi-View Stereo (MVS) technique for depth prediction that benefits from rich semantic features of the Segment Anything Model (SAM)
This enhanced depth prediction, in turn, serves as a prompt to our Transformer-based semantic segmentation decoder.
arXiv Detail & Related papers (2023-10-31T20:15:40Z) - Video Task Decathlon: Unifying Image and Video Tasks in Autonomous
Driving [85.62076860189116]
Video Task Decathlon (VTD) includes ten representative image and video tasks spanning classification, segmentation, localization, and association of objects and pixels.
We develop our unified network, VTDNet, that uses a single structure and a single set of weights for all ten tasks.
arXiv Detail & Related papers (2023-09-08T16:33:27Z) - Expanding Frozen Vision-Language Models without Retraining: Towards
Improved Robot Perception [0.0]
Vision-language models (VLMs) have shown powerful capabilities in visual question answering and reasoning tasks.
In this paper, we demonstrate a method of aligning the embedding spaces of different modalities to the vision embedding space.
We show that using multiple modalities as input improves the VLM's scene understanding and enhances its overall performance in various tasks.
arXiv Detail & Related papers (2023-08-31T06:53:55Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Multi-Task Learning of Object State Changes from Uncurated Videos [55.60442251060871]
We learn to temporally localize object state changes by observing people interacting with objects in long uncurated web videos.
We show that our multi-task model achieves a relative improvement of 40% over the prior single-task methods.
We also test our method on long egocentric videos of the EPIC-KITCHENS and the Ego4D datasets in a zero-shot setup.
arXiv Detail & Related papers (2022-11-24T09:42:46Z) - SG-Net: Spatial Granularity Network for One-Stage Video Instance
Segmentation [7.544917072241684]
Video instance segmentation (VIS) is a new and critical task in computer vision.
We propose a one-stage spatial granularity network (SG-Net) for VIS.
We show that our method can achieve improved performance in both accuracy and inference speed.
arXiv Detail & Related papers (2021-03-18T14:31:15Z) - SVAM: Saliency-guided Visual Attention Modeling by Autonomous Underwater
Robots [16.242924916178282]
This paper presents a holistic approach to saliency-guided visual attention modeling (SVAM) for use by autonomous underwater robots.
Our proposed model, named SVAM-Net, integrates deep visual features at various scales and semantics for effective salient object detection (SOD) in natural underwater images.
arXiv Detail & Related papers (2020-11-12T08:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.