Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models
- URL: http://arxiv.org/abs/2311.08421v1
- Date: Fri, 10 Nov 2023 16:37:43 GMT
- Title: Surrogate Neural Networks to Estimate Parametric Sensitivity of Ocean
Models
- Authors: Yixuan Sun, Elizabeth Cucuzzella, Steven Brus, Sri Hari Krishna
Narayanan, Balu Nadiga, Luke Van Roekel, Jan H\"uckelheim, Sandeep Madireddy
- Abstract summary: Ocean processes affect phenomena such as hurricanes and droughts.
For an idealized ocean model, we generated perturbed parameter ensemble data and trained surrogate neural network models.
The neural surrogates accurately predicted the one-step forward dynamics, of which we then computed the parametric sensitivity.
- Score: 2.956865819041394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling is crucial to understanding the effect of greenhouse gases, warming,
and ice sheet melting on the ocean. At the same time, ocean processes affect
phenomena such as hurricanes and droughts. Parameters in the models that cannot
be physically measured have a significant effect on the model output. For an
idealized ocean model, we generated perturbed parameter ensemble data and
trained surrogate neural network models. The neural surrogates accurately
predicted the one-step forward dynamics, of which we then computed the
parametric sensitivity.
Related papers
- OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
This study introduces OceanNet, a principled neural operator-based digital twin for ocean circulation.
OceanNet is applied to the northwest Atlantic Ocean western boundary current (the Gulf Stream)
arXiv Detail & Related papers (2023-10-01T23:06:17Z) - A Three-regime Model of Network Pruning [47.92525418773768]
We use temperature-like and load-like parameters to model the impact of neural network (NN) training hyper parameters on pruning performance.
A key empirical result we identify is a sharp transition phenomenon: depending on the value of a load-like parameter in the pruned model, increasing the value of a temperature-like parameter in the pre-pruned model may either enhance or impair subsequent pruning performance.
Our model reveals that the dichotomous effect of high temperature is associated with transitions between distinct types of global structures in the post-pruned model.
arXiv Detail & Related papers (2023-05-28T08:09:25Z) - Physical Knowledge Enhanced Deep Neural Network for Sea Surface
Temperature Prediction [29.989387641655625]
We introduce a method for Sea Surface Temperature (SST) prediction that transfers physical knowledge from historical observations to numerical models.
Specifically, we use a combination of an encoder and a generative adversarial network (GAN) to capture physical knowledge from the observed data.
The numerical model data is then fed into the pre-trained model to generate physics-enhanced data, which can then be used for SST prediction.
arXiv Detail & Related papers (2023-04-19T02:08:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Physics-Guided Generative Adversarial Networks for Sea Subsurface
Temperature Prediction [24.55780949103687]
Sea subsurface temperature is affected by global warming in climate change.
Existing research is commonly based on either physics-based numerical models or data based models.
We propose a novel framework based on generative adversarial network (GAN) combined with numerical model to predict sea subsurface temperature.
arXiv Detail & Related papers (2021-11-04T23:46:51Z) - Combining data assimilation and machine learning to estimate parameters
of a convective-scale model [0.0]
Errors in the representation of clouds in convection-permitting numerical weather prediction models can be introduced by different sources.
In this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural networks.
arXiv Detail & Related papers (2021-09-07T09:17:29Z) - Towards Optimally Weighted Physics-Informed Neural Networks in Ocean
Modelling [0.0]
State-of-the-art techniques are required to develop models that can capture the complexity of ocean currents and temperature flows.
This work explores the benefits of using physics-informed neural networks (PINNs) for solving partial differential equations related to ocean modeling.
arXiv Detail & Related papers (2021-06-16T12:48:13Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z) - Semiparametric Bayesian Forecasting of Spatial Earthquake Occurrences [77.68028443709338]
We propose a fully Bayesian formulation of the Epidemic Type Aftershock Sequence (ETAS) model.
The occurrence of the mainshock earthquakes in a geographical region is assumed to follow an inhomogeneous spatial point process.
arXiv Detail & Related papers (2020-02-05T10:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.