Magic in generalized Rokhsar-Kivelson wavefunctions
- URL: http://arxiv.org/abs/2311.08463v2
- Date: Thu, 9 May 2024 13:27:50 GMT
- Title: Magic in generalized Rokhsar-Kivelson wavefunctions
- Authors: Poetri Sonya Tarabunga, Claudio Castelnovo,
- Abstract summary: We study magic, as quantified by the stabilizer Renyi entropy, in a class of models known as generalized Rokhsar-Kive systems.
We find that the maximum of the SRE generically occurs at a cusp away from the quantum critical point, where the derivative suddenly changes sign.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Magic is a property of a quantum state that characterizes its deviation from a stabilizer state, serving as a useful resource for achieving universal quantum computation e.g., within schemes that use Clifford operations. In this work, we study magic, as quantified by the stabilizer Renyi entropy, in a class of models known as generalized Rokhsar-Kivelson systems, i.e., Hamiltonians that allow a stochastic matrix form (SMF) decomposition. The ground state wavefunctions of these systems can be written explicitly throughout their phase diagram, and their properties can be related to associated classical statistical mechanics problems, thereby allowing powerful analytical and numerical approaches that are not usually available in conventional quantum many body settings. As a result, we are able to express the SRE in terms of wave function coefficients that can be understood as a free energy difference of related classical problems. We apply this insight to a range of quantum many body SMF Hamiltonians, which affords us to study numerically the SRE of large high-dimensional systems, and in some cases to obtain analytical results. We observe that the behaviour of the SRE is relatively featureless across quantum phase transitions in these systems, although it is indeed singular (in its first or higher order derivative, depending on the nature of the transition). On the contrary, we find that the maximum of the SRE generically occurs at a cusp away from the quantum critical point, where the derivative suddenly changes sign. Furthermore, we compare the SRE and the logarithm of overlaps with specific stabilizer states, asymptotically realised in the ground state phase diagrams of these systems. We find that they display strikingly similar behaviors, which in turn establish rigorous bounds on the min-relative entropy of magic.
Related papers
- Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Signatures of quantum phases in a dissipative system [13.23575512928342]
Lindbladian formalism has been all-pervasive to interpret non-equilibrium steady states of quantum many-body systems.
We study the fate of free fermionic and superconducting phases in a dissipative one-dimensional Kitaev model.
arXiv Detail & Related papers (2023-12-28T17:53:26Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Dynamical singularity of the rate function for quench dynamics in
finite-size quantum systems [1.2514666672776884]
We study the realization of the dynamical singularity of the rate function for finite-size systems under the twist boundary condition.
We show that exact zeros of the Loschmidt echo can be always achieved when the postquench parameter is across the underlying equilibrium phase transition point.
arXiv Detail & Related papers (2022-11-06T14:35:57Z) - Indication of critical scaling in time during the relaxation of an open
quantum system [34.82692226532414]
Phase transitions correspond to the singular behavior of physical systems in response to continuous control parameters like temperature or external fields.
Near continuous phase transitions, associated with the divergence of a correlation length, universal power-law scaling behavior with critical exponents independent of microscopic system details is found.
arXiv Detail & Related papers (2022-08-10T05:59:14Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Influence functional of many-body systems: temporal entanglement and
matrix-product state representation [0.0]
Feynman-Vernon influence functional (IF) was originally introduced to describe the effect of a quantum environment on the dynamics of an open quantum system.
We apply the IF approach to describe quantum many-body dynamics in isolated spin systems.
arXiv Detail & Related papers (2021-03-25T10:41:15Z) - Joint statistics of work and entropy production along quantum
trajectories [0.0]
In thermodynamics, entropy production and work quantify irreversibility and the consumption of useful energy when a system is driven out of equilibrium.
We here derive a general formula for computing the joint statistics of work and entropy production in Markovian driven quantum systems.
As a corollary, we derive a modified fluctuation-dissipation relation (FDR) for the entropy production alone, applicable to transitions between arbitrary steady-states.
arXiv Detail & Related papers (2020-11-23T18:06:13Z) - Extremal quantum states [0.41998444721319206]
We peruse quantumness from a variety of viewpoints, concentrating on phase-space formulations.
The symmetry-transcending properties of the Husimi $Q$ function make it our basic tool.
We use these quantities to formulate extremal principles and determine in this way which states are the most and least "quantum"
arXiv Detail & Related papers (2020-10-09T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.