Uncertainty Quantification in Neural-Network Based Pain Intensity
Estimation
- URL: http://arxiv.org/abs/2311.08569v2
- Date: Wed, 29 Nov 2023 13:20:53 GMT
- Title: Uncertainty Quantification in Neural-Network Based Pain Intensity
Estimation
- Authors: Burcu Ozek, Zhenyuan Lu, Srinivasan Radhakrishnan, Sagar Kamarthi
- Abstract summary: The evaluation of pain intensity is challenging because different individuals experience pain differently.
This study presents a neural network-based method for objective pain interval estimation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Improper pain management can lead to severe physical or mental consequences,
including suffering, and an increased risk of opioid dependency. Assessing the
presence and severity of pain is imperative to prevent such outcomes and
determine the appropriate intervention. However, the evaluation of pain
intensity is challenging because different individuals experience pain
differently. To overcome this, researchers have employed machine learning
models to evaluate pain intensity objectively. However, these efforts have
primarily focused on point estimation of pain, disregarding the inherent
uncertainty and variability present in the data and model. Consequently, the
point estimates provide only partial information for clinical decision-making.
This study presents a neural network-based method for objective pain interval
estimation, incorporating uncertainty quantification. This work explores three
algorithms: the bootstrap method, lower and upper bound estimation (LossL)
optimized by genetic algorithm, and modified lower and upper bound estimation
(LossS) optimized by gradient descent algorithm. Our empirical results reveal
that LossS outperforms the other two by providing a narrower prediction
interval. As LossS outperforms, we assessed its performance in three different
scenarios for pain assessment: (1) a generalized approach (single model for the
entire population), (2) a personalized approach (separate model for each
individual), and (3) a hybrid approach (separate model for each cluster of
individuals). Our findings demonstrate the hybrid approach's superior
performance, with notable practicality in clinical contexts. It has the
potential to be a valuable tool for clinicians, enabling objective pain
intensity assessment while taking uncertainty into account. This capability is
crucial in facilitating effective pain management and reducing the risks
associated with improper treatment.
Related papers
- Unbiased Pain Assessment through Wearables and EHR Data: Multi-attribute
Fairness Loss-based CNN Approach [3.799109312082668]
We propose a Multi-attribute Fairness Loss (MAFL) based CNN model to account for any sensitive attributes included in the data.
We compare the proposed model with well-known existing mitigation procedures, and studies reveal that the implemented model performs favorably in contrast to state-of-the-art methods.
arXiv Detail & Related papers (2023-07-03T09:21:36Z) - Causal Inference under Data Restrictions [0.0]
This dissertation focuses on modern causal inference under uncertainty and data restrictions.
It includes applications to neoadjuvant clinical trials, distributed data networks, and robust individualized decision making.
arXiv Detail & Related papers (2023-01-20T20:14:32Z) - Region-Based Evidential Deep Learning to Quantify Uncertainty and
Improve Robustness of Brain Tumor Segmentation [14.76728117630242]
Uncertainty estimation is an efficient solution to this problem.
Current uncertainty estimation methods are limited by their high computational cost and inconsistency.
We propose a region-based EDL framework that can generate reliable uncertainty maps and robust segmentation results.
arXiv Detail & Related papers (2022-08-11T21:04:15Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Multimodal Spatio-Temporal Deep Learning Approach for Neonatal
Postoperative Pain Assessment [3.523040451502402]
Current practice for assessing neonatal postoperative pain is subjective, inconsistent, slow and discontinuous.
We present a novel multimodal-temporal approach that integrates visual and vocal signals and uses them for assessing neonatal postoperative pain.
arXiv Detail & Related papers (2020-12-03T18:52:35Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Pain Intensity Estimation from Mobile Video Using 2D and 3D Facial
Keypoints [1.6402428190800593]
Managing post-surgical pain is critical for successful surgical outcomes.
One of the challenges of pain management is accurately assessing the pain level of patients.
We introduce an approach that analyzes 2D and 3D facial keypoints of post-surgical patients to estimate their pain intensity level.
arXiv Detail & Related papers (2020-06-17T00:18:29Z) - Contextual Constrained Learning for Dose-Finding Clinical Trials [102.8283665750281]
C3T-Budget is a contextual constrained clinical trial algorithm for dose-finding under both budget and safety constraints.
It recruits patients with consideration of the remaining budget, the remaining time, and the characteristics of each group.
arXiv Detail & Related papers (2020-01-08T11:46:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.