Towards Generalizable SER: Soft Labeling and Data Augmentation for
Modeling Temporal Emotion Shifts in Large-Scale Multilingual Speech
- URL: http://arxiv.org/abs/2311.08607v1
- Date: Wed, 15 Nov 2023 00:09:21 GMT
- Title: Towards Generalizable SER: Soft Labeling and Data Augmentation for
Modeling Temporal Emotion Shifts in Large-Scale Multilingual Speech
- Authors: Mohamed Osman, Tamer Nadeem, Ghada Khoriba
- Abstract summary: We propose a soft labeling system to capture gradational emotional intensities.
Using the Whisper encoder and data augmentation methods inspired by contrastive learning, our method emphasizes the temporal dynamics of emotions.
We publish our open source model weights and initial promising results after fine-tuning on Hume-Prosody.
- Score: 3.86122440373248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing emotions in spoken communication is crucial for advanced
human-machine interaction. Current emotion detection methodologies often
display biases when applied cross-corpus. To address this, our study
amalgamates 16 diverse datasets, resulting in 375 hours of data across
languages like English, Chinese, and Japanese. We propose a soft labeling
system to capture gradational emotional intensities. Using the Whisper encoder
and data augmentation methods inspired by contrastive learning, our method
emphasizes the temporal dynamics of emotions. Our validation on four
multilingual datasets demonstrates notable zero-shot generalization. We publish
our open source model weights and initial promising results after fine-tuning
on Hume-Prosody.
Related papers
- Sociolinguistically Informed Interpretability: A Case Study on Hinglish
Emotion Classification [8.010713141364752]
We study the effect of language on emotion prediction across 3 PLMs on a Hinglish emotion classification dataset.
We find that models do learn these associations between language choice and emotional expression.
Having code-mixed data present in the pre-training can augment that learning when task-specific data is scarce.
arXiv Detail & Related papers (2024-02-05T16:05:32Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - Dynamic Causal Disentanglement Model for Dialogue Emotion Detection [77.96255121683011]
We propose a Dynamic Causal Disentanglement Model based on hidden variable separation.
This model effectively decomposes the content of dialogues and investigates the temporal accumulation of emotions.
Specifically, we propose a dynamic temporal disentanglement model to infer the propagation of utterances and hidden variables.
arXiv Detail & Related papers (2023-09-13T12:58:09Z) - Effect of Attention and Self-Supervised Speech Embeddings on
Non-Semantic Speech Tasks [3.570593982494095]
We look at speech emotion understanding as a perception task which is a more realistic setting.
We leverage ComParE rich dataset of multilingual speakers and multi-label regression target of 'emotion share' or perception of that emotion.
Our results show that HuBERT-Large with a self-attention-based light-weight sequence model provides 4.6% improvement over the reported baseline.
arXiv Detail & Related papers (2023-08-28T07:11:27Z) - Emotion Embeddings $\unicode{x2014}$ Learning Stable and Homogeneous
Abstractions from Heterogeneous Affective Datasets [4.720033725720261]
We propose a training procedure that learns a shared latent representation for emotions.
Experiments on a wide range of heterogeneous affective datasets indicate that this approach yields the desired interoperability.
arXiv Detail & Related papers (2023-08-15T16:39:10Z) - Multimodal Emotion Recognition with Modality-Pairwise Unsupervised
Contrastive Loss [80.79641247882012]
We focus on unsupervised feature learning for Multimodal Emotion Recognition (MER)
We consider discrete emotions, and as modalities text, audio and vision are used.
Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature.
arXiv Detail & Related papers (2022-07-23T10:11:24Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - Multimodal Emotion Recognition with High-level Speech and Text Features [8.141157362639182]
We propose a novel cross-representation speech model to perform emotion recognition on wav2vec 2.0 speech features.
We also train a CNN-based model to recognize emotions from text features extracted with Transformer-based models.
Our method is evaluated on the IEMOCAP dataset in a 4-class classification problem.
arXiv Detail & Related papers (2021-09-29T07:08:40Z) - EMOVIE: A Mandarin Emotion Speech Dataset with a Simple Emotional
Text-to-Speech Model [56.75775793011719]
We introduce and publicly release a Mandarin emotion speech dataset including 9,724 samples with audio files and its emotion human-labeled annotation.
Unlike those models which need additional reference audio as input, our model could predict emotion labels just from the input text and generate more expressive speech conditioned on the emotion embedding.
In the experiment phase, we first validate the effectiveness of our dataset by an emotion classification task. Then we train our model on the proposed dataset and conduct a series of subjective evaluations.
arXiv Detail & Related papers (2021-06-17T08:34:21Z) - GoEmotions: A Dataset of Fine-Grained Emotions [16.05879383442812]
We introduce GoEmotions, the largest manually annotated dataset of 58k English Reddit comments, labeled for 27 emotion categories or Neutral.
Our BERT-based model achieves an average F1-score of.46 across our proposed taxonomy, leaving much room for improvement.
arXiv Detail & Related papers (2020-05-01T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.