Supervised low-rank semi-nonnegative matrix factorization with frequency regularization for forecasting spatio-temporal data
- URL: http://arxiv.org/abs/2311.08636v2
- Date: Wed, 19 Jun 2024 17:22:27 GMT
- Title: Supervised low-rank semi-nonnegative matrix factorization with frequency regularization for forecasting spatio-temporal data
- Authors: Keunsu Kim, Hanbaek Lyu, Jinsu Kim, Jae-Hun Jung,
- Abstract summary: We propose a methodology for forecasting-temporal data using supervised semi-nonnegative matrix factorization (SMF) with frequency regularization.
We find that the results with the proposed methodology are comparable to previous research in the field of geophysical sciences but offer clearer interpretability.
- Score: 6.725792598352138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel methodology for forecasting spatio-temporal data using supervised semi-nonnegative matrix factorization (SSNMF) with frequency regularization. Matrix factorization is employed to decompose spatio-temporal data into spatial and temporal components. To improve clarity in the temporal patterns, we introduce a nonnegativity constraint on the time domain along with regularization in the frequency domain. Specifically, regularization in the frequency domain involves selecting features in the frequency space, making an interpretation in the frequency domain more convenient. We propose two methods in the frequency domain: soft and hard regularizations, and provide convergence guarantees to first-order stationary points of the corresponding constrained optimization problem. While our primary motivation stems from geophysical data analysis based on GRACE (Gravity Recovery and Climate Experiment) data, our methodology has the potential for wider application. Consequently, when applying our methodology to GRACE data, we find that the results with the proposed methodology are comparable to previous research in the field of geophysical sciences but offer clearer interpretability.
Related papers
- FredNormer: Frequency Domain Normalization for Non-stationary Time Series Forecasting [18.54376910126127]
We propose FredNormer, which observes datasets from a frequency perspective and adaptively up-weights the key frequency components.
FredNormer is a plug-and-play module, which does not compromise the efficiency compared to existing normalization methods.
arXiv Detail & Related papers (2024-10-02T04:05:50Z) - Time Series Analysis by State Space Learning [44.99833362998488]
Time series analysis by state-space models is widely used in forecasting and extracting unobservable components like level slope, and seasonality, along with explanatory variables.
Our research introduces the State Space Learning (SSL), a novel framework and paradigm that leverages the capabilities of statistical learning to construct a comprehensive framework for time series modeling and forecasting.
arXiv Detail & Related papers (2024-08-17T07:04:26Z) - Classification of High-dimensional Time Series in Spectral Domain using Explainable Features [8.656881800897661]
We propose a model-based approach for classifying high-dimensional stationary time series.
Our approach emphasizes the interpretability of model parameters, making it especially suitable for fields like neuroscience.
The novelty of our method lies in the interpretability of the model parameters, addressing critical needs in neuroscience.
arXiv Detail & Related papers (2024-08-15T19:10:12Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the auto-correlation of a noise process.
Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters.
We experimentally reconstruct the auto-correlation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2022-12-19T02:19:35Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - On Sparse High-Dimensional Graphical Model Learning For Dependent Time Series [12.94486861344922]
We consider the problem of inferring the conditional independence graph (CIG) of a sparse, high-dimensional stationary time series.
A sparse-group lasso-based frequency-domain formulation of the problem is presented.
We also empirically investigate selection of the tuning parameters based on Bayesian information criterion.
arXiv Detail & Related papers (2021-11-15T16:52:02Z) - Spatio-Temporal Variational Gaussian Processes [26.60276485130467]
We introduce a scalable approach to Gaussian process inference that combinestemporal-temporal filtering with natural variational inference.
We derive a sparse approximation that constructs a state-space model over a reduced set of inducing points.
We show that for separable Markov kernels the full sparse cases recover exactly the standard variational GP.
arXiv Detail & Related papers (2021-11-02T16:53:31Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.