Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning
- URL: http://arxiv.org/abs/2412.02904v1
- Date: Tue, 03 Dec 2024 23:14:47 GMT
- Title: Enhancing Trust in Large Language Models with Uncertainty-Aware Fine-Tuning
- Authors: Ranganath Krishnan, Piyush Khanna, Omesh Tickoo,
- Abstract summary: Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities.
LLMs are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as hallucinations.
We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory.
- Score: 10.457661605916435
- License:
- Abstract: Large language models (LLMs) have revolutionized the field of natural language processing with their impressive reasoning and question-answering capabilities. However, these models are sometimes prone to generating credible-sounding but incorrect information, a phenomenon known as LLM hallucinations. Reliable uncertainty estimation in LLMs is essential for fostering trust in their generated responses and serves as a critical tool for the detection and prevention of erroneous or hallucinated outputs. To achieve reliable and well-calibrated uncertainty quantification in open-ended and free-form natural language generation, we propose an uncertainty-aware fine-tuning approach for LLMs. This approach enhances the model's ability to provide reliable uncertainty estimates without compromising accuracy, thereby guiding them to produce more trustworthy responses. We introduce a novel uncertainty-aware causal language modeling loss function, grounded in the principles of decision theory. Through rigorous evaluation on multiple free-form question-answering datasets and models, we demonstrate that our uncertainty-aware fine-tuning approach yields better calibrated uncertainty estimates in natural language generation tasks than fine-tuning with the standard causal language modeling loss. Furthermore, the experimental results show that the proposed method significantly improves the model's ability to detect hallucinations and identify out-of-domain prompts.
Related papers
- LoGU: Long-form Generation with Uncertainty Expressions [49.76417603761989]
We introduce the task of Long-form Generation with Uncertainty(LoGU)
We identify two key challenges: Uncertainty Suppression and Uncertainty Misalignment.
Our framework adopts a divide-and-conquer strategy, refining uncertainty based on atomic claims.
Experiments on three long-form instruction following datasets show that our method significantly improves accuracy, reduces hallucinations, and maintains the comprehensiveness of responses.
arXiv Detail & Related papers (2024-10-18T09:15:35Z) - Finetuning Language Models to Emit Linguistic Expressions of Uncertainty [5.591074369497796]
Large language models (LLMs) are increasingly employed in information-seeking and decision-making tasks.
LLMs tend to generate information that conflicts with real-world facts, and their persuasive style can make these inaccuracies appear confident and convincing.
In this work, we explore supervised finetuning on uncertainty-augmented predictions as a method to develop models that produce linguistic expressions of uncertainty.
arXiv Detail & Related papers (2024-09-18T17:52:53Z) - Unconditional Truthfulness: Learning Conditional Dependency for Uncertainty Quantification of Large Language Models [96.43562963756975]
We train a regression model, which target variable is the gap between the conditional and the unconditional generation confidence.
We use this learned conditional dependency model to modulate the uncertainty of the current generation step based on the uncertainty of the previous step.
arXiv Detail & Related papers (2024-08-20T09:42:26Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification [116.77055746066375]
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output.
We propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification.
arXiv Detail & Related papers (2024-03-07T17:44:17Z) - Distinguishing the Knowable from the Unknowable with Language Models [15.471748481627143]
In the absence of ground-truth probabilities, we explore a setting where, in order to disentangle a given uncertainty, a significantly larger model stands in as a proxy for the ground truth.
We show that small linear probes trained on the embeddings of frozen, pretrained models accurately predict when larger models will be more confident at the token level.
We propose a fully unsupervised method that achieves non-trivial accuracy on the same task.
arXiv Detail & Related papers (2024-02-05T22:22:49Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.