Quantifying Uncertainty in Natural Language Explanations of Large
Language Models
- URL: http://arxiv.org/abs/2311.03533v1
- Date: Mon, 6 Nov 2023 21:14:40 GMT
- Title: Quantifying Uncertainty in Natural Language Explanations of Large
Language Models
- Authors: Sree Harsha Tanneru, Chirag Agarwal, Himabindu Lakkaraju
- Abstract summary: Large Language Models (LLMs) are increasingly used as powerful tools for high-stakes natural language processing (NLP) applications.
We propose two novel metrics -- $textitVerbalized Uncertainty$ and $textitProbing Uncertainty$ -- to quantify the uncertainty of generated explanations.
Our empirical analysis of benchmark datasets reveals that verbalized uncertainty is not a reliable estimate of explanation confidence.
- Score: 29.34960984639281
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are increasingly used as powerful tools for
several high-stakes natural language processing (NLP) applications. Recent
prompting works claim to elicit intermediate reasoning steps and key tokens
that serve as proxy explanations for LLM predictions. However, there is no
certainty whether these explanations are reliable and reflect the LLMs
behavior. In this work, we make one of the first attempts at quantifying the
uncertainty in explanations of LLMs. To this end, we propose two novel metrics
-- $\textit{Verbalized Uncertainty}$ and $\textit{Probing Uncertainty}$ -- to
quantify the uncertainty of generated explanations. While verbalized
uncertainty involves prompting the LLM to express its confidence in its
explanations, probing uncertainty leverages sample and model perturbations as a
means to quantify the uncertainty. Our empirical analysis of benchmark datasets
reveals that verbalized uncertainty is not a reliable estimate of explanation
confidence. Further, we show that the probing uncertainty estimates are
correlated with the faithfulness of an explanation, with lower uncertainty
corresponding to explanations with higher faithfulness. Our study provides
insights into the challenges and opportunities of quantifying uncertainty in
LLM explanations, contributing to the broader discussion of the trustworthiness
of foundation models.
Related papers
- CLUE: Concept-Level Uncertainty Estimation for Large Language Models [49.92690111618016]
We propose a novel framework for Concept-Level Uncertainty Estimation for Large Language Models (LLMs)
We leverage LLMs to convert output sequences into concept-level representations, breaking down sequences into individual concepts and measuring the uncertainty of each concept separately.
We conduct experiments to demonstrate that CLUE can provide more interpretable uncertainty estimation results compared with sentence-level uncertainty.
arXiv Detail & Related papers (2024-09-04T18:27:12Z) - MAQA: Evaluating Uncertainty Quantification in LLMs Regarding Data Uncertainty [10.154013836043816]
We propose a new Multi-Answer Question Answering dataset, MAQA, consisting of world knowledge, mathematical reasoning, and commonsense reasoning tasks.
Our findings show that entropy and consistency-based methods estimate the model uncertainty well even under data uncertainty.
We believe our observations will pave the way for future work on uncertainty quantification in realistic setting.
arXiv Detail & Related papers (2024-08-13T11:17:31Z) - Understanding the Relationship between Prompts and Response Uncertainty in Large Language Models [55.332004960574004]
Large language models (LLMs) are widely used in decision-making, but their reliability, especially in critical tasks like healthcare, is not well-established.
This paper investigates how the uncertainty of responses generated by LLMs relates to the information provided in the input prompt.
We propose a prompt-response concept model that explains how LLMs generate responses and helps understand the relationship between prompts and response uncertainty.
arXiv Detail & Related papers (2024-07-20T11:19:58Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Kernel Language Entropy: Fine-grained Uncertainty Quantification for LLMs from Semantic Similarities [79.9629927171974]
Uncertainty in Large Language Models (LLMs) is crucial for applications where safety and reliability are important.
We propose Kernel Language Entropy (KLE), a novel method for uncertainty estimation in white- and black-box LLMs.
arXiv Detail & Related papers (2024-05-30T12:42:05Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Examining LLMs' Uncertainty Expression Towards Questions Outside
Parametric Knowledge [35.067234242461545]
Large language models (LLMs) express uncertainty in situations where they lack sufficient parametric knowledge to generate reasonable responses.
This work aims to systematically investigate LLMs' behaviors in such situations, emphasizing the trade-off between honesty and helpfulness.
arXiv Detail & Related papers (2023-11-16T10:02:40Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.