Topological States Decorated by Twig Boundary in Plasma Photonic Crystals
- URL: http://arxiv.org/abs/2311.08733v2
- Date: Mon, 22 Apr 2024 02:18:29 GMT
- Title: Topological States Decorated by Twig Boundary in Plasma Photonic Crystals
- Authors: Jianfei Li, Jingfeng Yao, Ying Wang, Zhongxiang Zhou, Zhihao Lan, Chengxun Yuan,
- Abstract summary: twig edge states in graphene-like structures are viewed as the fourth states complementary to their zigzag, bearded, and armchair counterparts.
We show that twig edge states can exist in different phases of the system, such as quantum Hall phase, quantum spin Hall phase and insulating phase.
Our results show that the twig edges and interface engineering can bring new opportunities for more flexible manipulation of electromagnetic waves.
- Score: 3.116835392629124
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The twig edge states in graphene-like structures are viewed as the fourth states complementary to their zigzag, bearded, and armchair counterparts. In this work, we study a rod-in-plasma system in honeycomb lattice with twig edge truncation under external magnetic fields and lattice scaling and show that twig edge states can exist in different phases of the system, such as quantum Hall phase, quantum spin Hall phase and insulating phase. The twig edge states in the negative permittivity background exhibit robust one-way transmission property immune to backscattering and thus provide a novel avenue for solving the plasma communication blackout problem. Moreover, we demonstrate that corner and edge states can exist within the shrunken structure by modulating the on-site potential of the twig edges. Especially, helical edge states with the unique feature of pseudospin-momentum locking that could be excited by chiral sources are demonstrated at the twig edges. Our results show that the twig edges and interface engineering can bring new opportunities for more flexible manipulation of electromagnetic waves.
Related papers
- Controllable Operations of Edge States in Cross-One-dimensional
Topological Chains [0.0]
We develop a method to control edge states using local interactions of a four-node junction between cross-one-dimensional topological atomic chains.
These junction interactions can give rise to tunable couplings between the hybridized edge states within different geometric symmetry.
When the atoms are precisely positioned to couple waveguides, the correlated decay caused by the environment enables the anti-symmetric edge states to present subradiant dynamics.
arXiv Detail & Related papers (2023-09-25T03:17:46Z) - Multiple polaritonic edge states in a Su-Schrieffer-Heeger chain
strongly coupled to a multimode cavity [0.0]
Dipolar emitters strongly coupled to a multimode optical waveguide cavity are studied.
In the strong-coupling regime, the cavity photons hybridize the bright dipolar bulk band into a polaritonic one.
We find that bulk polaritons entering in resonance with the edge states inherit part of their localization properties.
arXiv Detail & Related papers (2023-05-11T16:31:24Z) - Real-space detection and manipulation of topological edge modes with
ultracold atoms [56.34005280792013]
We demonstrate an experimental protocol for realizing chiral edge modes in optical lattices.
We show how to efficiently prepare particles in these edge modes in three distinct Floquet topological regimes.
We study how edge modes emerge at the interface and how the group velocity of the particles is modified as the sharpness of the potential step is varied.
arXiv Detail & Related papers (2023-04-04T17:36:30Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Topological multi-mode waveguide QED [49.1574468325115]
We show how to take advantage of topologically protected propagating modes by interfacing them with quantum emitters.
Such capabilities pave the way for generating quantum gates among topologically protected photons as well as generating more complex entangled states of light in topological channels.
arXiv Detail & Related papers (2022-07-05T14:48:50Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Edge states in quantum spin chains: the interplay among interaction,
gradient magnetic field and Floquet engineering [11.419243482331034]
We explore the edge defects induced by spin-spin interaction in a finite paradigmatic Heisenberg spin chain.
The interplay between these two types of edge defects allows us to manipulate the magnon edge states from an isolated band into a continuum one.
Our study offers new insights to understand and control the magnon edge states governed by the interplay between edge defects induced by the spin-spin interaction and the Floquet-Wannier-Zeeman manipulation.
arXiv Detail & Related papers (2020-11-12T02:17:22Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Fermionic Chern insulator from twisted light with linear polarization [0.0]
We study a graphene-like model of electrons on a honeycomb lattice interacting with a twisted light field.
Our results are shown to be fully analogous to the behavior found in paradigmatic models for static and driven Chern insulators.
arXiv Detail & Related papers (2020-06-18T17:15:51Z) - Anomalous in-gap edge states in two-dimensional pseudospin-1 Dirac
insulators [0.0]
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena.
We report a surprising class of electronic in-gap edge states in pseudospin-1 materials.
In particular, we find that, in two-dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge through only an em electrostatic potential applied to a finite domain.
arXiv Detail & Related papers (2020-05-20T16:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.