adF: A Novel System for Measuring Web Fingerprinting through Ads
- URL: http://arxiv.org/abs/2311.08769v2
- Date: Thu, 12 Sep 2024 10:21:28 GMT
- Title: adF: A Novel System for Measuring Web Fingerprinting through Ads
- Authors: Miguel A. Bermejo-Agueda, Patricia Callejo, Rubén Cuevas, Ángel Cuevas,
- Abstract summary: adF performs its measurements from code inserted in ads.
We estimate that 66% of desktop devices and 40% of mobile devices can be uniquely fingerprinted with our web fingerprinting system.
To counter web fingerprinting, we propose ShieldF, a simple solution which blocks the reporting by browsers of those attributes.
- Score: 0.3499870393443268
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces adF, a novel system for analyzing the vulnerability of different devices, Operating Systems (OSes), and browsers to web fingerprinting. adF performs its measurements from code inserted in ads. We have used our system in several ad campaigns that delivered 5.40 million ad impressions. The collected data allow us to assess the vulnerability of current desktop and mobile devices to web fingerprinting. Based on our results, we estimate that 66% of desktop devices and 40% of mobile devices can be uniquely fingerprinted with our web fingerprinting system. However, the resilience to web fingerprinting varies significantly across browsers and device types, with Chrome on desktops being the most vulnerable configuration. To counter web fingerprinting, we propose ShieldF, a simple solution which blocks the reporting by browsers of those attributes that we found in the analysis of our dataset that present the most significant discrimination power. Our experiments reveal that ShieldF outperforms all anti-fingerprinting solutions proposed by major browsers (Chrome, Safari and Firefox) offering an increase in the resilience offered to web fingerprinting up to 62% for some device configurations. ShieldF is available as an add-on for any chromium-based browser. Moreover, it is readily adoptable by browser and mobile app developers. Its widespread use would lead to a significant improvement in the protection offered by browsers and mobile apps to web fingerprinting.
Related papers
- Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - How Unique is Whose Web Browser? The role of demographics in browser fingerprinting among US users [50.699390248359265]
Browser fingerprinting can be used to identify and track users across the Web, even without cookies.
This technique and resulting privacy risks have been studied for over a decade.
We provide a first-of-its-kind dataset to enable further research.
arXiv Detail & Related papers (2024-10-09T14:51:58Z) - Identified-and-Targeted: The First Early Evidence of the Privacy-Invasive Use of Browser Fingerprinting for Online Tracking [10.98528003128308]
It is imperative to address the mounting concerns regarding the utilization of browser fingerprinting in the realm of online advertising.
This paper introduces a new framework FPTrace'' designed to identify alterations in advertisements resulting from adjustments in browser fingerprinting settings.
Using FPTrace we conduct a large-scale measurement study to identify whether browser fingerprinting is being used for the purpose of user tracking and ad targeting.
arXiv Detail & Related papers (2024-09-24T01:39:16Z) - Assessing Web Fingerprinting Risk [2.144574168644798]
Browser fingerprints are device-specific identifiers that enable covert tracking of users even when cookies are disabled.
Previous research has established entropy, a measure of information, as the key metric for quantifying fingerprinting risk.
We provide the first study of browser fingerprinting which addresses the limitations of prior work.
arXiv Detail & Related papers (2024-03-22T20:34:41Z) - Keep your Identity Small: Privacy-preserving Client-side Fingerprinting [0.0]
Device fingerprinting is a widely used technique that allows a third party to identify a particular device.
One of its most widespread uses is to identify users visiting different websites and thus build their browsing history.
This constitutes a specific type of web tracking that poses a threat to users' privacy.
We propose Privacy-preserving Client-side Fingerprinting (PCF), a new method that allows device fingerprinting on the web, while blocks the possibility of performing web tracking.
arXiv Detail & Related papers (2023-09-14T09:45:29Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - Uncovering Fingerprinting Networks. An Analysis of In-Browser Tracking
using a Behavior-based Approach [0.0]
This thesis explores the current state of browser fingerprinting on the internet.
We implement FPNET to identify fingerprinting scripts on large sets of websites by observing their behavior.
We track down companies like Google, Yandex, Maxmind, Sift, or FingerprintJS.
arXiv Detail & Related papers (2022-08-15T18:06:25Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
We propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem.
Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly.
arXiv Detail & Related papers (2022-06-26T14:05:21Z) - ProxyFAUG: Proximity-based Fingerprint Augmentation [81.15016852963676]
ProxyFAUG is a rule-based, proximity-based method of fingerprint augmentation.
The best performing positioning method on this dataset is improved by 40% in terms of median error and 6% in terms of mean error, with the use of the augmented dataset.
arXiv Detail & Related papers (2021-02-04T15:59:30Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.