論文の概要: Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
- arxiv url: http://arxiv.org/abs/2311.09122v3
- Date: Sat, 29 Jun 2024 22:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 17:30:47.165155
- Title: Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark
- Title(参考訳): Universal NER:ゴールドスタンダードの多言語名前付きエンティティ認識ベンチマーク
- Authors: Stephen Mayhew, Terra Blevins, Shuheng Liu, Marek Šuppa, Hila Gonen, Joseph Marvin Imperial, Börje F. Karlsson, Peiqin Lin, Nikola Ljubešić, LJ Miranda, Barbara Plank, Arij Riabi, Yuval Pinter,
- Abstract要約: オープンなコミュニティ主導プロジェクトであるUniversal NER(UNER)を紹介し,多くの言語でゴールドスタンダードなNERベンチマークを開発する。
UNER v1には、12の異なる言語にまたがる言語間一貫性のあるスキーマで、名前付きエンティティで注釈付けされた18のデータセットが含まれている。
- 参考スコア(独自算出の注目度): 39.01204607174688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Universal NER (UNER), an open, community-driven project to develop gold-standard NER benchmarks in many languages. The overarching goal of UNER is to provide high-quality, cross-lingually consistent annotations to facilitate and standardize multilingual NER research. UNER v1 contains 18 datasets annotated with named entities in a cross-lingual consistent schema across 12 diverse languages. In this paper, we detail the dataset creation and composition of UNER; we also provide initial modeling baselines on both in-language and cross-lingual learning settings. We release the data, code, and fitted models to the public.
- Abstract(参考訳): オープンなコミュニティ主導プロジェクトであるUniversal NER(UNER)を紹介し,多くの言語でゴールドスタンダードなNERベンチマークを開発する。
UNERの包括的な目標は、多言語NER研究を容易にし、標準化するための高品質で言語横断的なアノテーションを提供することである。
UNER v1には、12の異なる言語にまたがる言語間一貫性のあるスキーマで、名前付きエンティティで注釈付けされた18のデータセットが含まれている。
本稿では、UNERのデータセット作成と構成について詳述し、言語内と言語間の両方の学習環境において、初期モデルベースラインを提供する。
データ、コード、および適合したモデルを一般に公開しています。
関連論文リスト
- XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (2023-05-19T18:00:03Z) - DualNER: A Dual-Teaching framework for Zero-shot Cross-lingual Named
Entity Recognition [27.245171237640502]
DualNERは、注釈付きソース言語コーパスとラベルなしターゲット言語テキストの両方をフル活用するためのフレームワークである。
NERの2つの相補的な学習パラダイム、すなわちシーケンスラベリングとスパン予測を統合マルチタスクフレームワークに統合する。
論文 参考訳(メタデータ) (2022-11-15T12:50:59Z) - Multi-lingual Evaluation of Code Generation Models [82.7357812992118]
本稿では,MBXPとMultilingual HumanEval,MathQA-Xという,評価コード生成モデルに関する新しいベンチマークを提案する。
これらのデータセットは10以上のプログラミング言語をカバーする。
コード生成モデルの性能を多言語で評価することができる。
論文 参考訳(メタデータ) (2022-10-26T17:17:06Z) - CROP: Zero-shot Cross-lingual Named Entity Recognition with Multilingual
Labeled Sequence Translation [113.99145386490639]
言語間NERは、整列した言語間表現や機械翻訳結果を通じて、言語間で知識を伝達することができる。
ゼロショット言語間NERを実現するために,クロスランガル・エンティティ・プロジェクション・フレームワーク(CROP)を提案する。
多言語ラベル付きシーケンス翻訳モデルを用いて、タグ付けされたシーケンスをターゲット言語に投影し、ターゲットの原文にラベル付けする。
論文 参考訳(メタデータ) (2022-10-13T13:32:36Z) - MultiCoNER: A Large-scale Multilingual dataset for Complex Named Entity
Recognition [15.805414696789796]
我々は、11言語にわたる3つのドメイン(ウィキ文、質問、検索クエリ)をカバーする、名前付きエンティティ認識のための大規模な多言語データセットであるMultiCoNERを提案する。
このデータセットは、低コンテキストシナリオを含む、NERの現代的課題を表現するように設計されている。
論文 参考訳(メタデータ) (2022-08-30T20:45:54Z) - CUGE: A Chinese Language Understanding and Generation Evaluation
Benchmark [144.05723617401674]
汎用言語インテリジェンス評価は、自然言語処理の長年の目標である。
汎用言語インテリジェンス評価には,ベンチマーク自体が包括的で体系的なものである必要がある,と我々は主張する。
以下に示す機能を備えた中国語理解・生成評価ベンチマークであるCUGEを提案する。
論文 参考訳(メタデータ) (2021-12-27T11:08:58Z) - A Multilingual Bag-of-Entities Model for Zero-Shot Cross-Lingual Text
Classification [16.684856745734944]
ゼロショット言語間テキスト分類の性能を向上する多言語バッグ・オブ・エンティリティモデルを提案する。
同じ概念を表す複数の言語のエンティティは、ユニークな識別子で定義される。
したがって、リソース豊富な言語のエンティティ機能に基づいて訓練されたモデルは、他の言語に直接適用することができる。
論文 参考訳(メタデータ) (2021-10-15T01:10:50Z) - UNER: Universal Named-Entity RecognitionFramework [0.0]
私たちは、最初の多言語UNERコーパス(SETimesparallelコーパス)を作成します。
英語のSETimescorpusは、既存のツールと知識ベースを使って注釈付けされる。
結果として得られるアノテーションは、SE-Timesコーパス内の他の言語に自動的に伝達される。
論文 参考訳(メタデータ) (2020-10-23T13:53:31Z) - XGLUE: A New Benchmark Dataset for Cross-lingual Pre-training,
Understanding and Generation [100.09099800591822]
XGLUEは、大規模な言語間の事前トレーニングモデルのトレーニングに使用できる、新しいベンチマークデータセットである。
XGLUEは、自然言語理解と生成シナリオの両方をカバーする、11の多様化されたタスクを提供する。
論文 参考訳(メタデータ) (2020-04-03T07:03:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。