Scattering phase shifts from a quantum computer
- URL: http://arxiv.org/abs/2311.09298v1
- Date: Wed, 15 Nov 2023 19:00:05 GMT
- Title: Scattering phase shifts from a quantum computer
- Authors: Sanket Sharma, Thomas Papenbrock, Lucas Platter
- Abstract summary: We calculate two-body scattering phase shifts on a quantum computer using a leading order short-range effective field theory Hamiltonian.
The algorithm combines the variational quantum eigensolver and the quantum subspace expansion.
We study how noise impacts these calculations and discuss noise mitigation required to extend our work to larger quantum processing units.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We calculate two-body scattering phase shifts on a quantum computer using a
leading order short-range effective field theory Hamiltonian. The algorithm
combines the variational quantum eigensolver and the quantum subspace
expansion. As an example, we consider scattering in the deuteron $^3$S$_1$
partial wave. We calculate scattering phase shifts with a quantum simulator and
on real hardware. We also study how noise impacts these calculations and
discuss noise mitigation required to extend our work to larger quantum
processing units. With current hardware, up to five superconducting qubits can
produce acceptable results, and larger calculations will require a significant
noise reduction.
Related papers
- Elastic scattering on a quantum computer [0.0]
We calculate the two-particle elastic scattering phase shift for a short-ranged interaction on a quantum computer.
Schmidt decomposition is used to reduce quantum circuits nominally requiring tens of qubits to 2-qubit circuits.
arXiv Detail & Related papers (2024-06-13T15:31:38Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
We show that owing to the noisy nature of current quantum processors, such a quantum algorithm will require single- and two-qubit gates with very low error probability to produce reliable results.
Specifically, we provide the upper bounds on how the relative error in variational parameters' propagation scales with the probability of noise in quantum hardware.
arXiv Detail & Related papers (2023-06-22T17:12:52Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Perturbative quantum simulation [2.309018557701645]
We introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches.
The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian.
We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies.
arXiv Detail & Related papers (2021-06-10T17:38:25Z) - Real-time quantum calculations of phase shifts using wave packet time
delays [0.0]
We present a method to extract the phase shift of a scattering process using the real-time evolution in the early and intermediate stages of the collision.
This procedure is convenient when using noisy quantum computers for which the out-state behavior is unreachable.
arXiv Detail & Related papers (2021-03-11T18:22:26Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Scattering in the Ising Model Using Quantum Lanczos Algorithm [0.32228025627337864]
We simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites on a quantum computer.
Results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time.
arXiv Detail & Related papers (2020-08-20T04:05:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.