Real-time quantum calculations of phase shifts using wave packet time
delays
- URL: http://arxiv.org/abs/2103.06848v1
- Date: Thu, 11 Mar 2021 18:22:26 GMT
- Title: Real-time quantum calculations of phase shifts using wave packet time
delays
- Authors: Erik Gustafson, Yingyue Zhu, Patrick Dreher, Norbert M. Linke, Yannick
Meurice
- Abstract summary: We present a method to extract the phase shift of a scattering process using the real-time evolution in the early and intermediate stages of the collision.
This procedure is convenient when using noisy quantum computers for which the out-state behavior is unreachable.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method to extract the phase shift of a scattering process using
the real-time evolution in the early and intermediate stages of the collision
in order to estimate the time delay of a wave packet. This procedure is
convenient when using noisy quantum computers for which the asymptotic
out-state behavior is unreachable. We demonstrate that the challenging Fourier
transforms involved in the state preparation and measurements can be
implemented in $1+1$ dimensions with current trapped ion devices and IBM
quantum computers. We compare quantum computation of the time delays obtained
in the one-particle quantum mechanics limit and the scalable quantum field
theory formulation with accurate numerical results. We discuss the finite
volume effects in the Wigner formula connecting time delays to phase shifts.
The results reported involve two- and four-qubit calculations, and we discuss
the possibility of larger scale computations in the near future.
Related papers
- A quantum computing concept for 1-D elastic wave simulation with exponential speedup [0.0]
We present a quantum computing concept for 1-D elastic wave propagation in heterogeneous media.
The method rests on a finite-difference approximation, followed by a sparsity-preserving transformation of the discrete elastic wave equation to a Schr"odinger equation.
An implementation on an error-free quantum simulator verifies our approach and forms the basis of numerical experiments.
arXiv Detail & Related papers (2023-12-22T14:58:01Z) - Scattering phase shifts from a quantum computer [0.0]
We calculate two-body scattering phase shifts on a quantum computer using a leading order short-range effective field theory Hamiltonian.
The algorithm combines the variational quantum eigensolver and the quantum subspace expansion.
We study how noise impacts these calculations and discuss noise mitigation required to extend our work to larger quantum processing units.
arXiv Detail & Related papers (2023-11-15T19:00:05Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Scattering in the Ising Model Using Quantum Lanczos Algorithm [0.32228025627337864]
We simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites on a quantum computer.
Results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time.
arXiv Detail & Related papers (2020-08-20T04:05:52Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z) - Variationally Scheduled Quantum Simulation [0.0]
We investigate a variational method for determining the optimal scheduling procedure within the context of adiabatic state preparation.
In the absence of quantum error correction, running a quantum device for any meaningful amount of time causes a system to become susceptible to the loss of relevant information.
Our variational method is found to exhibit resilience against control errors, which are commonly encountered within the realm of quantum computing.
arXiv Detail & Related papers (2020-03-22T14:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.