論文の概要: Fine-grained LLM Agent: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback
- arxiv url: http://arxiv.org/abs/2311.09336v4
- Date: Tue, 17 Sep 2024 21:33:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:46:22.362821
- Title: Fine-grained LLM Agent: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback
- Title(参考訳): 微粒化LDMエージェント:微粒化作用フィードバックによる大規模言語モデルのピンポイント化と精細化
- Authors: Wenda Xu, Daniel Deutsch, Mara Finkelstein, Juraj Juraska, Biao Zhang, Zhongtao Liu, William Yang Wang, Lei Li, Markus Freitag,
- Abstract要約: LLMエージェントは、大規模言語モデルの出力を洗練するための推論手法である。
中心となる考え方は、学習したきめ細かいフィードバックモデルを使用して欠陥を特定し、LCMを反復的に洗練させることです。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
- 参考スコア(独自算出の注目度): 65.84061725174269
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent large language models (LLM) are leveraging human feedback to improve their generation quality. However, human feedback is costly to obtain, especially during inference. In this work, we propose Fine-grained LLM agent, an inference time optimization method to refine LLM's output. The core idea is to use a learned fine-grained feedback model to pinpoint defects and guide LLM to refine them iteratively. Using original LLM as a proposal of edits, Fine-grained LLM agent searches for defect-less text via simulated annealing, trading off the exploration and exploitation. We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization. Fine-grained LLM agent consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
- Abstract(参考訳): 最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
しかし、人間からのフィードバックは、特に推論時に得られるのに費用がかかる。
本研究では, LLMの出力を最適化するための推定時間最適化法である, 微粒化LDMエージェントを提案する。
中心となる考え方は、学習したきめ細かいフィードバックモデルを使用して欠陥を特定し、LCMを反復的に洗練させることです。
オリジナルの LLM を編集の提案として使用し、微粒な LLM エージェントがシミュレートされたアニールを用いて欠陥のないテキストを検索し、探索とエクスプロイトのトレードオフを行う。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMエージェントは、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lまで改善された。
関連論文リスト
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
Invar-RAGと呼ばれる2段階ファインチューニングアーキテクチャを提案する。
検索段階では、LORAに基づく表現学習を統合してLLMベースの検索器を構築する。
生成段階では、抽出した情報に基づいて回答を生成する際のLCM精度を向上させるための精細調整法が用いられる。
論文 参考訳(メタデータ) (2024-11-11T14:25:37Z) - LLM Self-Correction with DeCRIM: Decompose, Critique, and Refine for Enhanced Following of Instructions with Multiple Constraints [86.59857711385833]
実世界のマルチ制約命令に従うLLMの能力を評価するために設計された最初のベンチマークであるRealInstructを紹介する。
オープンソースモデルとプロプライエタリモデルのパフォーマンスギャップを解決するため,Decompose, Critique and Refine(DeCRIM)自己補正パイプラインを提案する。
この結果から,DeCRIMはフィードバックが弱い場合でも,RealInstructでは7.3%,IFEvalでは8.0%,Mistralでは7.3%向上した。
論文 参考訳(メタデータ) (2024-10-09T01:25:10Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
論文 参考訳(メタデータ) (2024-10-04T09:50:45Z) - Cross-Refine: Improving Natural Language Explanation Generation by Learning in Tandem [14.537146664859902]
人間と同様に、大きな言語モデル(LLM)は、最初の試みについて最適な説明を常に生成するとは限らない。
本稿では,2つのLLMをジェネレータとして配置し,それぞれに役割モデリングを施したクロスリファインを紹介する。
ジェネレータは、最初のNLEを出力し、その後、批評家から提供されるフィードバックと提案を使って、この最初の説明を洗練する。
論文 参考訳(メタデータ) (2024-09-11T09:21:20Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Re-Ex: Revising after Explanation Reduces the Factual Errors in LLM Responses [9.956253757863145]
本稿では,大規模言語モデル(LLM)生成応答を後編集するRe-Exを提案する。
Re-Exは、事実的エラー説明ステップと呼ばれる新しい推論ステップを導入した。
説明ステップに加えて、Re-Exは、応答修正プロセスに必要なトークン数と推論時間を短縮する新しいプロンプト技術も取り入れている。
論文 参考訳(メタデータ) (2024-02-27T00:22:18Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z) - Self-Refine: Iterative Refinement with Self-Feedback [62.78755306241981]
Self-Refineは、反復的なフィードバックと改善を通じて、大きな言語モデル(LLM)からの初期出力を改善するアプローチである。
GPT-3.5, ChatGPT, および GPT-4) LLM を用いて, 対話応答生成から数学的推論に至るまで, 7 つのタスクにまたがる自己決定性を評価する。
我々の研究は、GPT-4のような最先端のLCMでさえ、単純でスタンドアロンなアプローチを使用してテスト時にさらに改善できることを示します。
論文 参考訳(メタデータ) (2023-03-30T18:30:01Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。