論文の概要: Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning
- arxiv url: http://arxiv.org/abs/2311.09441v3
- Date: Wed, 20 Mar 2024 04:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 22:17:48.078763
- Title: Exploring the Privacy-Energy Consumption Tradeoff for Split Federated Learning
- Title(参考訳): 分散学習のためのプライバシ・エネルギー消費トレードオフの探索
- Authors: Joohyung Lee, Mohamed Seif, Jungchan Cho, H. Vincent Poor,
- Abstract要約: Split Federated Learning (SFL)は、最近、有望な分散学習技術として登場した。
SFLにおけるカット層の選択は、クライアントのエネルギー消費とプライバシに大きな影響を与える可能性がある。
本稿では、SFLプロセスの概要を概観し、エネルギー消費とプライバシを徹底的に分析する。
- 参考スコア(独自算出の注目度): 51.02352381270177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Split Federated Learning (SFL) has recently emerged as a promising distributed learning technology, leveraging the strengths of both federated and split learning. It emphasizes the advantages of rapid convergence while addressing privacy concerns. As a result, this innovation has received significant attention from both industry and academia. However, since the model is split at a specific layer, known as a cut layer, into both client-side and server-side models for the SFL, the choice of the cut layer in SFL can have a substantial impact on the energy consumption of clients and their privacy, as it influences the training burden and the output of the client-side models. In this article, we provide a comprehensive overview of the SFL process and thoroughly analyze energy consumption and privacy. This analysis considers the influence of various system parameters on the cut layer selection strategy. Additionally, we provide an illustrative example of the cut layer selection, aiming to minimize clients' risk of reconstructing the raw data at the server while sustaining energy consumption within the required energy budget, which involves trade-offs. Finally, we address open challenges in this field. These directions represent promising avenues for future research and development.
- Abstract(参考訳): Split Federated Learning (SFL)は、最近、フェデレーションとスプリットラーニングの両方の長所を活用する、有望な分散学習技術として登場した。
プライバシーの懸念に対処しながら、迅速な収束の利点を強調している。
その結果、この革新は産業と学術の両方から大きな注目を集めている。
しかし、SFLのクライアント側モデルとサーバ側モデルの両方に、カット層と呼ばれる特定の層で分割されるため、SFLにおけるカット層の選択は、クライアントのエネルギー消費とプライバシに大きく影響し、クライアント側のモデルのトレーニング負荷と出力に影響を与える可能性がある。
本稿では、SFLプロセスの概要を概観し、エネルギー消費とプライバシーを徹底的に分析する。
この分析は、カット層選択戦略における様々なシステムパラメータの影響を考察する。
また,要求されるエネルギー予算内でのエネルギー消費を抑えつつ,クライアントの生データをサーバで再構築するリスクを最小限に抑えるため,カット層選択の図示的な例を示す。
最後に、この分野におけるオープンな課題に対処する。
これらの方向は将来の研究開発に期待できる道のりを表している。
関連論文リスト
- TinyML NLP Approach for Semantic Wireless Sentiment Classification [49.801175302937246]
本稿では,エネルギー効率のよいプライバシ保護型小型機械学習(MLTiny)方式としてスプリットラーニング(SL)を導入する。
その結果,SLは高い精度を維持しながら処理能力とCO2排出量を低減し,FLは効率とプライバシのバランスのとれた妥協を提供することがわかった。
論文 参考訳(メタデータ) (2024-11-09T21:26:59Z) - A Green Multi-Attribute Client Selection for Over-The-Air Federated Learning: A Grey-Wolf-Optimizer Approach [5.277822313069301]
OTA(Over-the-air)FLは、デバイス間直接接続や集中型サーバを使わずにモデルアップデートを広めることによって、これらの課題に対処するために導入された。
OTA-FLは、エネルギー消費の増大とネットワーク遅延の制限を引き起こした。
本稿では,グレイオオカミ(GWO)を用いた多属性クライアント選択フレームワークを提案し,各ラウンドの参加者数を戦略的に制御する。
論文 参考訳(メタデータ) (2024-09-16T20:03:57Z) - Exploring Selective Layer Fine-Tuning in Federated Learning [48.470385357429215]
フェデレートラーニング(FL)は,分散データを用いた基礎モデルの微調整のための,有望なパラダイムとして登場した。
FLにおける選択的層微調整について検討し、クライアントがローカルデータやリソースに応じて選択した層を調整できるフレキシブルなアプローチを強調した。
論文 参考訳(メタデータ) (2024-08-28T07:48:39Z) - Federated Short-Term Load Forecasting with Personalization Layers for
Heterogeneous Clients [0.7252027234425334]
パーソナライズ層を扱えるパーソナライズされたFLアルゴリズム(PL-FL)を提案する。
PL-FLはArgonne Privacy-Preserving Federated Learningパッケージを使って実装されている。
NREL ComStockデータセットでトレーニングしたモデルの予測性能を検証した。
論文 参考訳(メタデータ) (2023-09-22T21:57:52Z) - Improving Privacy-Preserving Vertical Federated Learning by Efficient Communication with ADMM [62.62684911017472]
フェデレートラーニング(FL)により、デバイスは共有モデルを共同でトレーニングし、トレーニングデータをプライバシ目的でローカルに保つことができる。
マルチヘッド(VIM)を備えたVFLフレームワークを導入し、各クライアントの別々のコントリビューションを考慮に入れます。
VIMは最先端技術に比べて性能が著しく向上し、収束が速い。
論文 参考訳(メタデータ) (2022-07-20T23:14:33Z) - FedREP: Towards Horizontal Federated Load Forecasting for Retail Energy
Providers [1.1254693939127909]
我々は、エネルギー負荷予測のための新しい水平プライバシー保護フェデレーション学習フレームワーク、フェデレーション(FedREP)を提案する。
我々は、複数のREPがデータを共有することなく、共通の堅牢な機械学習モデルを構築することを可能にすることにより、制御センタと複数の小売業者からなる連合学習システムを考える。
予測には、長期の観測シーケンスを学習できるため、最先端のLong Short-Term Memory(LSTM)ニューラルネットワークを使用する。
論文 参考訳(メタデータ) (2022-03-01T04:16:19Z) - Context-Aware Online Client Selection for Hierarchical Federated
Learning [33.205640790962505]
フェデレートラーニング(FL)は、データプライバシ問題に対処するための魅力的なフレームワークだと考えられている。
フェデレートラーニング(FL)は、データプライバシ問題に対処するための魅力的なフレームワークだと考えられている。
論文 参考訳(メタデータ) (2021-12-02T01:47:01Z) - Splitfed learning without client-side synchronization: Analyzing
client-side split network portion size to overall performance [4.689140226545214]
Federated Learning (FL)、Split Learning (SL)、SplitFed Learning (SFL)は、分散機械学習における最近の3つの発展である。
本稿では,クライアント側モデル同期を必要としないSFLについて検討する。
MNISTテストセットでのMulti-head Split Learningよりも1%-2%の精度しか得られない。
論文 参考訳(メタデータ) (2021-09-19T22:57:23Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
本稿では,分散学習政策の環境フットプリントに影響を与える要因を概説し,分析する。
バニラとコンセンサスによって駆動される分散FLポリシーの両方をモデル化する。
その結果、flは低ビット/ジュール効率を特徴とするワイヤレスシステムにおいて、顕著なエンドツーエンドの省エネ(30%-40%)が可能となった。
論文 参考訳(メタデータ) (2021-03-18T16:04:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。