Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
- URL: http://arxiv.org/abs/2311.09511v4
- Date: Wed, 02 Jul 2025 20:23:07 GMT
- Title: Identifying Systems with Symmetries using Equivariant Autoregressive Reservoir Computers
- Authors: Fredy Vides, Idelfonso B. R. Nogueira, Gabriela Lopez Gutierrez, Lendy Banegas, Evelyn Flores,
- Abstract summary: Investigation focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers.<n>Results in structured matrix approximation theory are presented, exploring a two-fold approach.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The investigation reported in this document focuses on identifying systems with symmetries using equivariant autoregressive reservoir computers. General results in structured matrix approximation theory are presented, exploring a two-fold approach. Firstly, a comprehensive examination of generic symmetry-preserving nonlinear time delay embedding is conducted. This involves analyzing time series data sampled from an equivariant system under study. Secondly, sparse least-squares methods are applied to discern approximate representations of the output coupling matrices. These matrices play a critical role in determining the nonlinear autoregressive representation of an equivariant system. The structural characteristics of these matrices are dictated by the set of symmetries inherent in the system. The document outlines prototypical algorithms derived from the described techniques, offering insight into their practical applications. Emphasis is placed on the significant improvement on structured identification precision when compared to classical reservoir computing methods for the simulation of equivariant dynamical systems.
Related papers
- Learning finite symmetry groups of dynamical systems via equivariance detection [0.0]
We introduce the Equivariance Seeker Model (ESM), a data-driven method for discovering the underlying finite equivariant symmetry group of an arbitrary function.
We apply ESM specifically to dynamical systems, identifying their symmetry groups directly from observed trajectory data.
arXiv Detail & Related papers (2025-03-04T21:17:37Z) - Learning Infinitesimal Generators of Continuous Symmetries from Data [15.42275880523356]
We propose a novel symmetry learning algorithm based on transformations defined with one- parameter groups.
Our method is built upon minimal inductive biases, encompassing not only commonly utilized symmetries rooted in Lie groups but also extending to symmetries derived from nonlinear generators.
arXiv Detail & Related papers (2024-10-29T08:28:23Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Structure-Preserving Transformers for Sequences of SPD Matrices [6.404789669795639]
Transformer-based auto-attention mechanisms have been successfully applied to the analysis of a variety of context-reliant data types.
In this paper, we present such a mechanism, designed to classify sequences of Symmetric Positive Definite matrices.
We apply our method to automatic sleep staging on timeseries of EEG-derived covariance matrices from a standard dataset, obtaining high levels of stage-wise performance.
arXiv Detail & Related papers (2023-09-14T10:23:43Z) - Accelerated Discovery of Machine-Learned Symmetries: Deriving the
Exceptional Lie Groups G2, F4 and E6 [55.41644538483948]
This letter introduces two improved algorithms that significantly speed up the discovery of symmetry transformations.
Given the significant complexity of the exceptional Lie groups, our results demonstrate that this machine-learning method for discovering symmetries is completely general and can be applied to a wide variety of labeled datasets.
arXiv Detail & Related papers (2023-07-10T20:25:44Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - Benchmarking sparse system identification with low-dimensional chaos [1.5849413067450229]
We systematically benchmark sparse regression variants by utilizing the dysts standardized database of chaotic systems.
We demonstrate how this open-source tool can be used to quantitatively compare different methods of system identification.
In all cases, we used ensembling to improve the noise robustness of SINDy and provide statistical comparisons.
arXiv Detail & Related papers (2023-02-04T18:49:52Z) - Oracle-Preserving Latent Flows [58.720142291102135]
We develop a methodology for the simultaneous discovery of multiple nontrivial continuous symmetries across an entire labelled dataset.
The symmetry transformations and the corresponding generators are modeled with fully connected neural networks trained with a specially constructed loss function.
The two new elements in this work are the use of a reduced-dimensionality latent space and the generalization to transformations invariant with respect to high-dimensional oracles.
arXiv Detail & Related papers (2023-02-02T00:13:32Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Robust identification of non-autonomous dynamical systems using
stochastic dynamics models [0.0]
This paper considers the problem of system identification (ID) of linear and nonlinear non-autonomous systems from noisy and sparse data.
We propose and analyze an objective function derived from a Bayesian formulation for learning a hidden Markov model.
We show that our proposed approach has improved smoothness and inherent regularization that make it well-suited for system ID.
arXiv Detail & Related papers (2022-12-20T16:36:23Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
Ordinary Differential Equations (ODEs) have recently gained a lot of attention in machine learning.
theoretical aspects, e.g., identifiability and properties of statistical estimation are still obscure.
This paper derives a sufficient condition for the identifiability of homogeneous linear ODE systems from a sequence of equally-spaced error-free observations sampled from a single trajectory.
arXiv Detail & Related papers (2022-10-12T06:46:38Z) - Joint Learning of Linear Time-Invariant Dynamical Systems [31.879189478584095]
This paper investigates methods for jointly estimating the transition matrices of multiple systems.
We establish finite-time estimation error rates that fully reflect the roles of trajectory lengths, dimension, and number of systems under consideration.
We develop novel techniques that are of interest for addressing similar joint-learning problems.
arXiv Detail & Related papers (2021-12-21T03:09:43Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Learning Log-Determinant Divergences for Positive Definite Matrices [47.61701711840848]
In this paper, we propose to learn similarity measures in a data-driven manner.
We capitalize on the alphabeta-log-det divergence, which is a meta-divergence parametrized by scalars alpha and beta.
Our key idea is to cast these parameters in a continuum and learn them from data.
arXiv Detail & Related papers (2021-04-13T19:09:43Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.