Comprehensive framework for evaluation of deep neural networks in detection and quantification of lymphoma from PET/CT images: clinical insights, pitfalls, and observer agreement analyses
- URL: http://arxiv.org/abs/2311.09614v4
- Date: Fri, 06 Dec 2024 04:35:45 GMT
- Title: Comprehensive framework for evaluation of deep neural networks in detection and quantification of lymphoma from PET/CT images: clinical insights, pitfalls, and observer agreement analyses
- Authors: Shadab Ahamed, Yixi Xu, Sara Kurkowska, Claire Gowdy, Joo H. O, Ingrid Bloise, Don Wilson, Patrick Martineau, François Bénard, Fereshteh Yousefirizi, Rahul Dodhia, Juan M. Lavista, William B. Weeks, Carlos F. Uribe, Arman Rahmim,
- Abstract summary: This study addresses critical gaps in automated lymphoma segmentation from PET/CT images.<n>Deep learning has been applied for lymphoma lesion segmentation, but few studies incorporate out-of-distribution testing.<n>We show that networks perform better on large, intense lesions with higher metabolic activity.
- Score: 0.9958347059366389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study addresses critical gaps in automated lymphoma segmentation from PET/CT images, focusing on issues often overlooked in existing literature. While deep learning has been applied for lymphoma lesion segmentation, few studies incorporate out-of-distribution testing, raising concerns about model generalizability across diverse imaging conditions and patient populations. We highlight the need to compare model performance with expert human annotators, including intra- and inter-observer variability, to understand task difficulty better. Most approaches focus on overall segmentation accuracy but overlook lesion-specific measures important for precise lesion detection and disease quantification. To address these gaps, we propose a clinically relevant framework for evaluating deep segmentation networks. Using this lesion measure-specific evaluation, we assess the performance of four deep networks (ResUNet, SegResNet, DynUNet, and SwinUNETR) across 611 cases from multi-institutional datasets, covering various lymphoma subtypes and lesion characteristics. Beyond standard metrics like the Dice similarity coefficient, we evaluate clinical lesion measures and their prediction errors. We also introduce detection criteria for lesion localization and propose a new detection Criterion 3 based on metabolic characteristics. We show that networks perform better on large, intense lesions with higher metabolic activity. Finally, we compare network performance to physicians via intra- and inter-observer variability analyses, demonstrating that network errors closely resemble those made by experts, i.e., the small and faint lesions remain challenging for both humans and networks. This study aims to improve automated lesion segmentation's clinical relevance, supporting better treatment decisions for lymphoma patients. The code is available at: https://github.com/microsoft/lymphoma-segmentation-dnn.
Related papers
- TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - Evaluation of QCNN-LSTM for Disability Forecasting in Multiple Sclerosis
Using Sequential Multisequence MRI [0.0]
Long ShortTerm Memory (LSTM) models were studied to provide sequential relationships for each timepoint in MRIs of patients with Multiple Sclerosis (MS)
Our hypothesis is that quantum models will provide competitive performance.
arXiv Detail & Related papers (2024-01-22T17:14:47Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Generalized Dice Focal Loss trained 3D Residual UNet for Automated
Lesion Segmentation in Whole-Body FDG PET/CT Images [0.4630436098920747]
We train a 3D Residual UNet using Generalized Dice Focal Loss function on the AutoPET challenge 2023 training dataset.
On the preliminary test phase, the average ensemble achieved a Dice similarity coefficient (DSC), false-positive volume (FPV) and false negative volume (FNV) of 0.5417, 0.8261 ml, and 0.2538 ml, respectively.
arXiv Detail & Related papers (2023-09-24T05:29:45Z) - A Weakly Supervised Segmentation Network Embedding Cross-scale Attention
Guidance and Noise-sensitive Constraint for Detecting Tertiary Lymphoid
Structures of Pancreatic Tumors [19.775101438245272]
The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors.
We propose a weakly supervised segmentation network to detect the TLSs in a manner of few-shot learning.
Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy.
arXiv Detail & Related papers (2023-07-27T03:25:09Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Attention-based Saliency Maps Improve Interpretability of Pneumothorax
Classification [52.77024349608834]
To investigate chest radiograph (CXR) classification performance of vision transformers (ViT) and interpretability of attention-based saliency.
ViTs were fine-tuned for lung disease classification using four public data sets: CheXpert, Chest X-Ray 14, MIMIC CXR, and VinBigData.
ViTs had comparable CXR classification AUCs compared with state-of-the-art CNNs.
arXiv Detail & Related papers (2023-03-03T12:05:41Z) - Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis [7.371818587876888]
This research focuses on a two step framework for skin lesion segmentation followed by classification for lesion analysis.
We explored the effectiveness of deep convolutional neural network based architectures by designing an encoder-decoder architecture for skin lesion segmentation and CNN based classification network.
Our cascaded end to end deep learning based approach is the first of its kind, where the classification accuracy of the lesion is significantly improved because of prior segmentation.
arXiv Detail & Related papers (2023-01-16T01:08:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Universal Lymph Node Detection in T2 MRI using Neural Networks [9.256201343701251]
Identification of abdominal Lymph Nodes (LN) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) scans is critical for staging of lymphoproliferative diseases.
Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum) in single MR slices.
In this study, a Computer Aided Detection (CAD) pipeline to universally identify abdominal LN in volumetric T2 MRI using neural networks is proposed.
arXiv Detail & Related papers (2022-03-31T18:52:35Z) - Universal Lesion Detection in CT Scans using Neural Network Ensembles [5.341593824515018]
A prerequisite for lesion sizing is their detection, as it promotes the downstream assessment of tumor spread.
We propose the use of state-of-the-art detection neural networks to flag suspicious lesions present in the NIH DeepLesion dataset for sizing.
We construct an ensemble of the best detection models to localize lesions for sizing with a precision of 65.17% and sensitivity of 91.67% at 4 FP per image.
arXiv Detail & Related papers (2021-11-09T00:11:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Quantification of pulmonary involvement in COVID-19 pneumonia by means
of a cascade oftwo U-nets: training and assessment on multipledatasets using
different annotation criteria [83.83783947027392]
This study aims at exploiting Artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions.
We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets.
The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
arXiv Detail & Related papers (2021-05-06T10:21:28Z) - Semi-supervised learning for generalizable intracranial hemorrhage
detection and segmentation [0.0]
We develop and evaluate a semisupervised learning model for intracranial hemorrhage detection and segmentation on an outofdistribution head CT evaluation set.
An initial "teacher" deep learning model was trained on 457 pixel-labeled head CT scans collected from one US institution from 2010-2017.
A second "student" model was trained on this combined pixel-labeled and pseudo-labeled dataset.
arXiv Detail & Related papers (2021-05-03T00:14:43Z) - COVID-19 detection using chest X-rays: is lung segmentation important
for generalization? [3.198144010381572]
Deep neural networks (DNNs) trained to classify chest X-rays as COVID-19, normal or pneumonia, using a relatively small and mixed dataset.
Performance in the external dataset and LRP analysis suggest that DNNs can be trained in small and mixed datasets and detect COVID-19.
arXiv Detail & Related papers (2021-04-12T09:06:28Z) - Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC) [2.031570465477242]
We focus on detecting Basal Cell Carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture.
We analyze two different encoders for the first part of the UNet network and two additional training strategies.
The best model achieves over 96%, accuracy, sensitivity, and specificity on the test set.
arXiv Detail & Related papers (2021-03-05T15:39:55Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - FLANNEL: Focal Loss Based Neural Network Ensemble for COVID-19 Detection [61.04937460198252]
We construct the X-ray imaging data from 2874 patients with four classes: normal, bacterial pneumonia, non-COVID-19 viral pneumonia, and COVID-19.
To identify COVID-19, we propose a Focal Loss Based Neural Ensemble Network (FLANNEL)
FLANNEL consistently outperforms baseline models on COVID-19 identification task in all metrics.
arXiv Detail & Related papers (2020-10-30T03:17:31Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
The novel coronavirus (SARS-CoV-2) has led to a pandemic.
The current testing regime based on Reverse Transcription-Polymerase Chain Reaction for SARS-CoV-2 has been unable to keep up with testing demands.
We propose a framework called CovidDeep that combines efficient DNNs with commercially available WMSs for pervasive testing of the virus.
arXiv Detail & Related papers (2020-07-20T21:47:28Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.