Comprehensive framework for evaluation of deep neural networks in detection and quantification of lymphoma from PET/CT images: clinical insights, pitfalls, and observer agreement analyses
- URL: http://arxiv.org/abs/2311.09614v4
- Date: Fri, 06 Dec 2024 04:35:45 GMT
- Title: Comprehensive framework for evaluation of deep neural networks in detection and quantification of lymphoma from PET/CT images: clinical insights, pitfalls, and observer agreement analyses
- Authors: Shadab Ahamed, Yixi Xu, Sara Kurkowska, Claire Gowdy, Joo H. O, Ingrid Bloise, Don Wilson, Patrick Martineau, François Bénard, Fereshteh Yousefirizi, Rahul Dodhia, Juan M. Lavista, William B. Weeks, Carlos F. Uribe, Arman Rahmim,
- Abstract summary: This study addresses critical gaps in automated lymphoma segmentation from PET/CT images.
Deep learning has been applied for lymphoma lesion segmentation, but few studies incorporate out-of-distribution testing.
We show that networks perform better on large, intense lesions with higher metabolic activity.
- Score: 0.9958347059366389
- License:
- Abstract: This study addresses critical gaps in automated lymphoma segmentation from PET/CT images, focusing on issues often overlooked in existing literature. While deep learning has been applied for lymphoma lesion segmentation, few studies incorporate out-of-distribution testing, raising concerns about model generalizability across diverse imaging conditions and patient populations. We highlight the need to compare model performance with expert human annotators, including intra- and inter-observer variability, to understand task difficulty better. Most approaches focus on overall segmentation accuracy but overlook lesion-specific measures important for precise lesion detection and disease quantification. To address these gaps, we propose a clinically relevant framework for evaluating deep segmentation networks. Using this lesion measure-specific evaluation, we assess the performance of four deep networks (ResUNet, SegResNet, DynUNet, and SwinUNETR) across 611 cases from multi-institutional datasets, covering various lymphoma subtypes and lesion characteristics. Beyond standard metrics like the Dice similarity coefficient, we evaluate clinical lesion measures and their prediction errors. We also introduce detection criteria for lesion localization and propose a new detection Criterion 3 based on metabolic characteristics. We show that networks perform better on large, intense lesions with higher metabolic activity. Finally, we compare network performance to physicians via intra- and inter-observer variability analyses, demonstrating that network errors closely resemble those made by experts, i.e., the small and faint lesions remain challenging for both humans and networks. This study aims to improve automated lesion segmentation's clinical relevance, supporting better treatment decisions for lymphoma patients. The code is available at: https://github.com/microsoft/lymphoma-segmentation-dnn.
Related papers
- PULASki: Learning inter-rater variability using statistical distances to
improve probabilistic segmentation [36.136619420474766]
We propose the PULASki for biomedical image segmentation that accurately captures variability in expert annotations.
Our approach makes use of an improved loss function based on statistical distances in a conditional variational autoencoder structure.
Our method can also be applied to a wide range of multi-label segmentation tasks and is useful for downstream tasks such as hemodynamic modelling.
arXiv Detail & Related papers (2023-12-25T10:31:22Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - A Weakly Supervised Segmentation Network Embedding Cross-scale Attention
Guidance and Noise-sensitive Constraint for Detecting Tertiary Lymphoid
Structures of Pancreatic Tumors [19.775101438245272]
The presence of tertiary lymphoid structures (TLSs) on pancreatic pathological images is an important prognostic indicator of pancreatic tumors.
We propose a weakly supervised segmentation network to detect the TLSs in a manner of few-shot learning.
Experimental results on two collected datasets demonstrate that our proposed method significantly outperforms the state-of-the-art segmentation-based algorithms in terms of TLSs detection accuracy.
arXiv Detail & Related papers (2023-07-27T03:25:09Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Deep Learning based Novel Cascaded Approach for Skin Lesion Analysis [7.371818587876888]
This research focuses on a two step framework for skin lesion segmentation followed by classification for lesion analysis.
We explored the effectiveness of deep convolutional neural network based architectures by designing an encoder-decoder architecture for skin lesion segmentation and CNN based classification network.
Our cascaded end to end deep learning based approach is the first of its kind, where the classification accuracy of the lesion is significantly improved because of prior segmentation.
arXiv Detail & Related papers (2023-01-16T01:08:32Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Universal Lesion Detection in CT Scans using Neural Network Ensembles [5.341593824515018]
A prerequisite for lesion sizing is their detection, as it promotes the downstream assessment of tumor spread.
We propose the use of state-of-the-art detection neural networks to flag suspicious lesions present in the NIH DeepLesion dataset for sizing.
We construct an ensemble of the best detection models to localize lesions for sizing with a precision of 65.17% and sensitivity of 91.67% at 4 FP per image.
arXiv Detail & Related papers (2021-11-09T00:11:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.