論文の概要: Near-optimal Closed-loop Method via Lyapunov Damping for Convex
Optimization
- arxiv url: http://arxiv.org/abs/2311.10053v1
- Date: Thu, 16 Nov 2023 17:48:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-17 13:11:41.647489
- Title: Near-optimal Closed-loop Method via Lyapunov Damping for Convex
Optimization
- Title(参考訳): 凸最適化のためのリアプノフダンピングによる近接最適閉ループ法
- Authors: Severin Maier, Camille Castera, Peter Ochs
- Abstract要約: 最適値に任意に近接する速度を示しながら閉ループ減衰を特徴とするシステムとしては,本システムが初めてであることを示す。
我々は,このシステムを離散化することで,LYDIAと呼ばれる実用的な一階法を導出する。
- 参考スコア(独自算出の注目度): 4.066869900592636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an autonomous system with closed-loop damping for first-order
convex optimization. While, to this day, optimal rates of convergence are only
achieved by non-autonomous methods via open-loop damping (e.g., Nesterov's
algorithm), we show that our system is the first one featuring a closed-loop
damping while exhibiting a rate arbitrarily close to the optimal one. We do so
by coupling the damping and the speed of convergence of the system via a
well-chosen Lyapunov function. We then derive a practical first-order algorithm
called LYDIA by discretizing our system, and present numerical experiments
supporting our theoretical findings.
- Abstract(参考訳): 一階凸最適化のための閉ループ減衰を用いた自律システムを提案する。
現在, 最適収束率は開ループ減衰(例えばネステロフのアルゴリズム)による非自律的手法によってのみ達成されているが, 最適減衰速度を任意に示しながら閉ループ減衰を特徴とする最初のシステムであることが示されている。
我々は,システムの減衰速度と収束速度を, well-chosen lyapunov 関数で結合することで,その実現を実現した。
そこで我々は,このシステムを離散化することで,LYDIAと呼ばれる実用的な一階法アルゴリズムを導出し,理論的な知見を裏付ける数値実験を行った。
関連論文リスト
- Distributed Optimization via Energy Conservation Laws in Dilated Coordinates [5.35599092568615]
本稿では,拡張座標における連続時間力学系の解析のためのエネルギー保存手法を提案する。
収束率を逆時間差係数で明示的に表すことができる。
その高速化された収束挙動は、実用的、大規模問題に対する様々な最先端分散最適化アルゴリズムに対してベンチマークされる。
論文 参考訳(メタデータ) (2024-09-28T08:02:43Z) - Enhancing Gaussian Process Surrogates for Optimization and Posterior Approximation via Random Exploration [2.984929040246293]
ガウス過程シュロゲートモデルの精度を高めるために、ランダムな探索ステップに依存する新しいノイズフリーベイズ最適化戦略。
新しいアルゴリズムは、古典的なGP-UCBの実装の容易さを維持しているが、さらなる探索がそれらの収束を促進する。
論文 参考訳(メタデータ) (2024-01-30T14:16:06Z) - Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for
Composite Convex Optimization [20.11028799145883]
複合凸最適化のための外挿法 (A-CODER) を用いた加速サイクル座標二元平均化法を提案する。
A-CODERは,前処理よりもブロック数に依存して最適な収束率が得られることを示す。
目的関数の滑らかな成分が有限和形式で表現できるような設定では、A-CODERの分散還元変種であるVR-A-CODERを導入し、最先端の複雑性を保証する。
論文 参考訳(メタデータ) (2023-03-28T19:46:30Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
2つの分布間の最適な輸送距離の効率的な計算は、様々な応用を促進するアルゴリズムとして機能する。
本稿では,$varepsilon$加法精度で最適な輸送を計算できるスケーラブルな一階最適化法を提案する。
論文 参考訳(メタデータ) (2023-01-30T15:46:39Z) - Reweighted Interacting Langevin Diffusions: an Accelerated Sampling
Methodfor Optimization [28.25662317591378]
本稿では, サンプリング手法を高速化し, 難解な最適化問題の解法を提案する。
提案手法は, 後部分布サンプリングとLangevin Dynamicsを用いた最適化の関連性について検討する。
論文 参考訳(メタデータ) (2023-01-30T03:48:20Z) - Non-Convex Optimization with Certificates and Fast Rates Through Kernel
Sums of Squares [68.8204255655161]
非最適化近似問題を考える。
本稿では,最優先計算を保証するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-11T09:37:04Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Particle Dual Averaging: Optimization of Mean Field Neural Networks with
Global Convergence Rate Analysis [40.762447301225926]
凸最適化における二重平均法を一般化する粒子二重平均法(PDA)を提案する。
提案手法の重要な応用は, 平均場系における2層ニューラルネットワークの最適化である。
平均場限界におけるニューラルネットワークはpdaによってグローバルに最適化できることを示す。
論文 参考訳(メタデータ) (2020-12-31T07:07:32Z) - Sequential Subspace Search for Functional Bayesian Optimization
Incorporating Experimenter Intuition [63.011641517977644]
本アルゴリズムは,実験者のガウス過程から引き出された一組の引き数で区切られた関数空間の有限次元ランダム部分空間列を生成する。
標準ベイズ最適化は各部分空間に適用され、次の部分空間の出発点(オリジン)として用いられる最良の解である。
シミュレーションおよび実世界の実験,すなわちブラインド関数マッチング,アルミニウム合金の最適析出強化関数の探索,深層ネットワークの学習速度スケジュール最適化において,本アルゴリズムを検証した。
論文 参考訳(メタデータ) (2020-09-08T06:54:11Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。