論文の概要: Stable Attractors for Neural networks classification via Ordinary Differential Equations (SA-nODE)
- arxiv url: http://arxiv.org/abs/2311.10387v2
- Date: Mon, 20 May 2024 11:53:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 00:10:05.620070
- Title: Stable Attractors for Neural networks classification via Ordinary Differential Equations (SA-nODE)
- Title(参考訳): 正規微分方程式(SA-nODE)によるニューラルネットワーク分類のための安定なトラクター
- Authors: Raffaele Marino, Lorenzo Giambagli, Lorenzo Chicchi, Lorenzo Buffoni, Duccio Fanelli,
- Abstract要約: プリオリは、予め割り当てられた固定安定なアトラクタのセットに対応するように構成されている。
分類を行う固有の能力は、ターゲットの安定なアトラクションのそれぞれに関連するアトラクションの形状の盆地に反映される。
この手法は最先端のディープラーニングアルゴリズムの性能には達しないが、解析的相互作用項を閉じた連続力学系が高性能な分類器として機能することを示す。
- 参考スコア(独自算出の注目度): 0.9786690381850358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel approach for supervised classification is presented which sits at the intersection of machine learning and dynamical systems theory. At variance with other methodologies that employ ordinary differential equations for classification purposes, the untrained model is a priori constructed to accommodate for a set of pre-assigned stationary stable attractors. Classifying amounts to steer the dynamics towards one of the planted attractors, depending on the specificity of the processed item supplied as an input. Asymptotically the system will hence converge on a specific point of the explored multi-dimensional space, flagging the category of the object to be eventually classified. Working in this context, the inherent ability to perform classification, as acquired ex post by the trained model, is ultimately reflected in the shaped basin of attractions associated to each of the target stable attractors. The performance of the proposed method is here challenged against simple toy models crafted for the purpose, as well as by resorting to well established reference standards. Although this method does not reach the performance of state-of-the-art deep learning algorithms, it illustrates that continuous dynamical systems with closed analytical interaction terms can serve as high-performance classifiers.
- Abstract(参考訳): 機械学習と力学系理論の交点に位置する教師付き分類の新しい手法を提案する。
通常の微分方程式を分類目的に用いた他の手法との相違点において、訓練されていないモデルは事前割り当てされた定常的誘引器の集合に対応するように構築された先行性である。
分類量は、入力として供給された処理項目の特異性に応じて、植木された引き金の1つに向かってダイナミクスを操る。
漸近的に、システムは探索された多次元空間の特定の点に収束し、最終的に分類される対象の圏を宣言する。
この文脈で作業する際、訓練されたモデルによって取得されたポストによって固有の分類を行う能力は、最終的にターゲットの安定なアトラクションのそれぞれに関連するアトラクションの形状の流域に反映される。
提案手法の性能は,その目的のために製作されたシンプルな玩具モデルや,確立された参照基準に頼って評価される。
この手法は最先端のディープラーニングアルゴリズムの性能には達しないが、解析的相互作用項を閉じた連続力学系が高性能な分類器として機能することを示す。
関連論文リスト
- Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing [0.9786690381850358]
本稿では,機械学習と動的システム理論の交叉における新しいアプローチであるEODECAを提案する。
EODECAの設計には、安定したアトラクタをフェーズ空間に埋め込む機能が含まれており、信頼性を高め、可逆的なダイナミクスを可能にする。
我々は,MNISTデータセットとFashion MNISTデータセットに対するEODECAの有効性を実証し,それぞれ98.06%,88.21%の精度を達成した。
論文 参考訳(メタデータ) (2023-12-22T13:34:18Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
本稿では,ガウスモデルの混合を連続学習フレームワークに組み込むことを提案する。
固定抽出器を用いたメモリフリーシナリオにおいて,本モデルが効果的に学習可能であることを示す。
論文 参考訳(メタデータ) (2023-07-09T04:33:19Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
データの合成と分類を可能にする統合機械学習モデルは、多くの場合、それらのタスク間の不均一なパフォーマンスを提供するか、トレーニングが不安定である。
それらの目的間のパラメータ化を共用した安定な連立エンドツーエンドトレーニングを可能にする分類器を用いて,バニラ拡散モデルを拡張した。
結果として得られた共同拡散モデルは、評価された全てのベンチマークにおいて、分類と生成品質の両方の観点から、最近の最先端のハイブリッド手法よりも優れている。
論文 参考訳(メタデータ) (2023-01-31T13:29:19Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
正規化を行うために小さなニューラルネットワークを学習することは、事前定義を使用することよりも優れていることを示す。
実験の結果,正準化関数の学習は多くのタスクで同変関数を学習する既存の手法と競合することがわかった。
論文 参考訳(メタデータ) (2022-11-11T21:58:15Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
微調整されたモデルのいくつかは、それらの間の線形経路における損失を増大させる大きな障壁を持つ。
テスト損失面上で線形に接続されているが、クラスタ外のモデルから切り離されている異なるモデルのクラスタが見つかる。
我々の研究は、損失面の幾何学がモデルを異なる関数へと導く方法を示している。
論文 参考訳(メタデータ) (2022-05-24T23:43:02Z) - Recurrent Spectral Network (RSN): shaping the basin of attraction of a
discrete map to reach automated classification [4.724825031148412]
自動分類のための新しい戦略が導入された。これは、完全に訓練された動的システムを利用して、アイテムを異なる引き付け者に向けて操る。
非線型項はトランジェントに作用し、初期条件として供給されたデータを離散力学系に切り離すことができる。
我々の新しい分類手法であるRecurrent Spectral Network (RSN) は、画像処理訓練のための標準データセットと同様に、図形的な目的のために作成された単純なテストベッドモデルに挑戦することに成功した。
論文 参考訳(メタデータ) (2022-02-09T14:59:06Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
近年の最先端のアクティブラーニング手法は, 主にGAN(Generative Adversarial Networks)をサンプル取得に活用している。
本稿では,MCDAL(Maximum Discrepancy for Active Learning)と呼ぶ新しいアクティブラーニングフレームワークを提案する。
特に,両者の差分を最大化することにより,より厳密な決定境界を学習する2つの補助的分類層を利用する。
論文 参考訳(メタデータ) (2021-07-23T06:57:08Z) - The Role of Isomorphism Classes in Multi-Relational Datasets [6.419762264544509]
アイソモーフィックリークは,マルチリレーショナル推論の性能を過大評価することを示す。
モデル評価のためのアイソモーフィック・アウェア・シンセサイティング・ベンチマークを提案する。
また、同型類は単純な優先順位付けスキームによって利用することができることを示した。
論文 参考訳(メタデータ) (2020-09-30T12:15:24Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
関連ラベルを「ターゲット語」として生成するためにシーケンス・ツー・シーケンス・モデルをどのように訓練するかを示す。
提案手法は,データポーラ方式におけるエンコーダのみのモデルよりも大幅に優れている。
論文 参考訳(メタデータ) (2020-03-14T22:29:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。