Stable Attractors for Neural networks classification via Ordinary Differential Equations (SA-nODE)
- URL: http://arxiv.org/abs/2311.10387v2
- Date: Mon, 20 May 2024 11:53:28 GMT
- Title: Stable Attractors for Neural networks classification via Ordinary Differential Equations (SA-nODE)
- Authors: Raffaele Marino, Lorenzo Giambagli, Lorenzo Chicchi, Lorenzo Buffoni, Duccio Fanelli,
- Abstract summary: A priori is constructed to accommodate a set of pre-assigned stationary stable attractors.
The inherent ability to perform classification is reflected in the shaped basin of attractions associated to each of the target stable attractors.
Although this method does not reach the performance of state-of-the-art deep learning algorithms, it illustrates that continuous dynamical systems with closed analytical interaction terms can serve as high-performance classifiers.
- Score: 0.9786690381850358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A novel approach for supervised classification is presented which sits at the intersection of machine learning and dynamical systems theory. At variance with other methodologies that employ ordinary differential equations for classification purposes, the untrained model is a priori constructed to accommodate for a set of pre-assigned stationary stable attractors. Classifying amounts to steer the dynamics towards one of the planted attractors, depending on the specificity of the processed item supplied as an input. Asymptotically the system will hence converge on a specific point of the explored multi-dimensional space, flagging the category of the object to be eventually classified. Working in this context, the inherent ability to perform classification, as acquired ex post by the trained model, is ultimately reflected in the shaped basin of attractions associated to each of the target stable attractors. The performance of the proposed method is here challenged against simple toy models crafted for the purpose, as well as by resorting to well established reference standards. Although this method does not reach the performance of state-of-the-art deep learning algorithms, it illustrates that continuous dynamical systems with closed analytical interaction terms can serve as high-performance classifiers.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Engineered Ordinary Differential Equations as Classification Algorithm (EODECA): thorough characterization and testing [0.9786690381850358]
We present EODECA, a novel approach at the intersection of machine learning and dynamical systems theory.
EODECA's design incorporates the ability to embed stable attractors in the phase space, enhancing reliability and allowing for reversible dynamics.
We demonstrate EODECA's effectiveness on the MNIST and Fashion MNIST datasets, achieving impressive accuracies of $98.06%$ and $88.21%$, respectively.
arXiv Detail & Related papers (2023-12-22T13:34:18Z) - Class-Incremental Mixture of Gaussians for Deep Continual Learning [15.49323098362628]
We propose end-to-end incorporation of the mixture of Gaussians model into the continual learning framework.
We show that our model can effectively learn in memory-free scenarios with fixed extractors.
arXiv Detail & Related papers (2023-07-09T04:33:19Z) - Learning Data Representations with Joint Diffusion Models [20.25147743706431]
Joint machine learning models that allow synthesizing and classifying data often offer uneven performance between those tasks or are unstable to train.
We extend the vanilla diffusion model with a classifier that allows for stable joint end-to-end training with shared parameterization between those objectives.
The resulting joint diffusion model outperforms recent state-of-the-art hybrid methods in terms of both classification and generation quality on all evaluated benchmarks.
arXiv Detail & Related papers (2023-01-31T13:29:19Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Equivariance with Learned Canonicalization Functions [77.32483958400282]
We show that learning a small neural network to perform canonicalization is better than using predefineds.
Our experiments show that learning the canonicalization function is competitive with existing techniques for learning equivariant functions across many tasks.
arXiv Detail & Related papers (2022-11-11T21:58:15Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
Some pairs of finetuned models have large barriers of increasing loss on the linear paths between them.
We find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster.
Our work demonstrates how the geometry of the loss surface can guide models towards different functions.
arXiv Detail & Related papers (2022-05-24T23:43:02Z) - Recurrent Spectral Network (RSN): shaping the basin of attraction of a
discrete map to reach automated classification [4.724825031148412]
A novel strategy to automated classification is introduced which exploits a fully trained dynamical system to steer items toward distinct attractors.
Non-linear terms act for a transient and allow to disentangle the data supplied as initial condition to the discrete dynamical system.
Our novel approach to classification, that we here term Recurrent Spectral Network (RSN), is successfully challenged against a simple test-bed model, created for illustrative purposes, as well as a standard dataset for image processing training.
arXiv Detail & Related papers (2022-02-09T14:59:06Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - The Role of Isomorphism Classes in Multi-Relational Datasets [6.419762264544509]
We show that isomorphism leakage overestimates performance in multi-relational inference.
We propose isomorphism-aware synthetic benchmarks for model evaluation.
We also demonstrate that isomorphism classes can be utilised through a simple prioritisation scheme.
arXiv Detail & Related papers (2020-09-30T12:15:24Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.