Perspectives of running self-consistent DMFT calculations for strongly
correlated electron systems on noisy quantum computing hardware
- URL: http://arxiv.org/abs/2311.10402v1
- Date: Fri, 17 Nov 2023 09:05:31 GMT
- Title: Perspectives of running self-consistent DMFT calculations for strongly
correlated electron systems on noisy quantum computing hardware
- Authors: Jannis Ehrlich and Daniel Urban and Christian Els\"asser
- Abstract summary: We present a QC approach to solve a two-site DMFT model based on the Variationalsolver (VQE) algorithm.
We discuss the challenges arising from Hilbert errors and suggest a means to overcome unphysical features in the self-energy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamical Mean Field Theory (DMFT) is one of the powerful computatioinal
approaches to study electron correlation effects in solid-state materials and
molecules. Its practical applicability is, however, limited by the exponential
growth of the many-particle Hilbert space with the number of considered
electronic orbitals. Here, the possibility of a one-to-one mapping between
electronic orbitals and the state of a qubit register suggests a significant
computational advantage for the use of a Quantum Computer (QC) for solving DMFT
models. In this work we present a QC approach to solve a two-site DMFT model
based on the Variational Quantum Eigensolver (VQE) algorithm. We discuss the
challenges arising from stochastic errors and suggest a means to overcome
unphysical features in the self-energy. We thereby demonstrate the feasibility
to obtain self-consistent results of the two-site DMFT model based on VQE
simulations with a finite number of shots. We systematically compare results
obtained on simulators with calculations on the IBMQ Ehningen QC hardware.
Related papers
- Dynamical Mean Field Theory for Real Materials on a Quantum Computer [0.0]
We report on the development of a hybrid quantum-classical DFT+DMFT simulation framework.
Hardware experiments with up to 14 qubits on the IBM Quantum system are conducted.
We showcase the utility of our quantum DFT+DMFT workflow by assessing the correlation effects on the electronic structure of a real material.
arXiv Detail & Related papers (2024-04-15T07:45:50Z) - Enhancing density functional theory using the variational quantum
eigensolver [0.0]
Density Functional Theory (DFT) is the gold standard classical algorithm for predicting physical properties of materials and molecules.
We develop a hybrid quantum/classical algorithm called quantum enhanced DFT (QEDFT) that constructs quantum approximations of the universal functional using data obtained from a quantum computer.
arXiv Detail & Related papers (2024-02-28T18:16:56Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Orbital-optimized pair-correlated electron simulations on trapped-ion
quantum computers [0.471876092032107]
Variational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on quantum computers.
A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz.
We run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters - the largest full VQE simulation with a correlated wave function on quantum hardware.
arXiv Detail & Related papers (2022-12-05T18:40:54Z) - Exploring the scaling limitations of the variational quantum eigensolver
with the bond dissociation of hydride diatomic molecules [0.0]
Materials simulations involving strongly correlated electrons pose fundamental challenges to state-of-the-art electronic structure methods.
No quantum computer has simulated a molecule of a size and complexity relevant to real-world applications, despite the fact that the variational quantum eigensolver algorithm can predict chemically accurate total energies.
We show that the inclusion of d-orbitals and the use of the UCCSD ansatz, which are both necessary to capture the correct TiH physics, dramatically increase the cost of this problem.
arXiv Detail & Related papers (2022-08-15T19:21:17Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Quantum HF/DFT-Embedding Algorithms for Electronic Structure
Calculations: Scaling up to Complex Molecular Systems [0.0]
We propose the embedding of quantum electronic structure calculation into a classically computed environment.
We achieve this by constructing an effective Hamiltonian that incorporates a mean field describing the action of the inactive electrons on a selected Active Space.
arXiv Detail & Related papers (2020-09-03T18:35:50Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.