論文の概要: Using Cooperative Game Theory to Prune Neural Networks
- arxiv url: http://arxiv.org/abs/2311.10468v1
- Date: Fri, 17 Nov 2023 11:48:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-20 14:56:00.540742
- Title: Using Cooperative Game Theory to Prune Neural Networks
- Title(参考訳): 協調ゲーム理論を用いたニューラルネットワークの創成
- Authors: Mauricio Diaz-Ortiz Jr, Benjamin Kempinski, Daphne Cornelisse, Yoram
Bachrach, Tal Kachman
- Abstract要約: 本稿では,協調ゲーム理論の解の概念を用いて,ニューラルネットワークの刈り取り問題に対処する方法について述べる。
本稿では,GTAP(Game Theory Assisted Pruning)と呼ばれる,予測精度を維持しつつ,ニューラルネットワークのサイズを小さくする手法を提案する。
- 参考スコア(独自算出の注目度): 7.3959659158152355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how solution concepts from cooperative game theory can be used to
tackle the problem of pruning neural networks.
The ever-growing size of deep neural networks (DNNs) increases their
performance, but also their computational requirements. We introduce a method
called Game Theory Assisted Pruning (GTAP), which reduces the neural network's
size while preserving its predictive accuracy. GTAP is based on eliminating
neurons in the network based on an estimation of their joint impact on the
prediction quality through game theoretic solutions. Specifically, we use a
power index akin to the Shapley value or Banzhaf index, tailored using a
procedure similar to Dropout (commonly used to tackle overfitting problems in
machine learning).
Empirical evaluation of both feedforward networks and convolutional neural
networks shows that this method outperforms existing approaches in the achieved
tradeoff between the number of parameters and model accuracy.
- Abstract(参考訳): 本稿では,協調ゲーム理論の解法概念を,ニューラルネットワークの刈り込み問題にどう応用するかを示す。
深層ニューラルネットワーク(DNN)の増大するサイズは、パフォーマンスだけでなく、計算要求も向上する。
本稿では,GTAP(Game Theory Assisted Pruning)と呼ばれる,予測精度を維持しつつ,ニューラルネットワークのサイズを小さくする手法を提案する。
GTAPは、ゲーム理論による予測品質への共同影響の推定に基づいて、ネットワーク内のニューロンを除去することに基づいている。
具体的には、Dropoutに似た手順(機械学習において過度に適合する問題に対処するためによく使用される)で調整されたShapley値やBanzhafインデックスに似たパワーインデックスを使用する。
フィードフォワードネットワークと畳み込みニューラルネットワークの両方の実験的評価は、パラメータ数とモデルの精度の間のトレードオフにおいて、既存のアプローチよりも優れていることを示している。
関連論文リスト
- Verified Neural Compressed Sensing [58.98637799432153]
精度の高い計算タスクのために、初めて(私たちの知識を最大限に活用するために)証明可能なニューラルネットワークを開発します。
極小問題次元(最大50)では、線形および双項線形測定からスパースベクトルを確実に回復するニューラルネットワークを訓練できることを示す。
ネットワークの複雑さは問題の難易度に適応できることを示し、従来の圧縮センシング手法が証明不可能な問題を解く。
論文 参考訳(メタデータ) (2024-05-07T12:20:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Guaranteed Quantization Error Computation for Neural Network Model
Compression [2.610470075814367]
ニューラルネットワークモデル圧縮技術は、産業システムの組み込みデバイス上でのディープニューラルネットワークの計算問題に対処することができる。
統合されたニューラルネットワークは、フィードフォワードニューラルネットワークとその量子化されたバージョンから構築され、2つのニューラルネットワーク間の正確な出力差を生成する。
論文 参考訳(メタデータ) (2023-04-26T20:21:54Z) - Consistency of Neural Networks with Regularization [0.0]
本稿では,ニューラルネットワークの規則化による一般的な枠組みを提案し,その一貫性を実証する。
双曲関数(Tanh)と整形線形単位(ReLU)の2種類の活性化関数が検討されている。
論文 参考訳(メタデータ) (2022-06-22T23:33:39Z) - Stochastic Neural Networks with Infinite Width are Deterministic [7.07065078444922]
使用中のニューラルネットワークの主要なタイプであるニューラルネットワークについて研究する。
最適化されたニューラルネットワークの幅が無限大になる傾向があるため、トレーニングセットの予測分散はゼロになる。
論文 参考訳(メタデータ) (2022-01-30T04:52:31Z) - Neuron-based Pruning of Deep Neural Networks with Better Generalization
using Kronecker Factored Curvature Approximation [18.224344440110862]
提案アルゴリズムは、ヘッセンのスペクトル半径を探索することにより、圧縮されたモデルのパラメータを平らな解へ向ける。
以上の結果から, ニューロン圧縮における最先端の結果が向上することが示唆された。
この手法は、異なるニューラルネットワークモデル間で小さな精度で、非常に小さなネットワークを実現することができる。
論文 参考訳(メタデータ) (2021-11-16T15:55:59Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
目的関数の幾何学的構造を解析することにより、刈り取られたニューラルネットワークを訓練する性能を解析する。
本稿では,ニューラルネットワークモデルがプルーニングされるにつれて,一般化が保証された望ましいモデル近傍の凸領域が大きくなることを示す。
論文 参考訳(メタデータ) (2021-10-12T01:11:07Z) - Measurement error models: from nonparametric methods to deep neural
networks [3.1798318618973362]
本稿では,測定誤差モデルの推定に有効なニューラルネットワーク設計を提案する。
完全に接続されたフィードフォワードニューラルネットワークを用いて回帰関数を$f(x)$に近似する。
我々は、ニューラルネットワークアプローチと古典的ノンパラメトリック手法を比較するために、広範囲にわたる数値的研究を行っている。
論文 参考訳(メタデータ) (2020-07-15T06:05:37Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
本稿では,ディープニューラルネットワークの中間層に関連する実験的なRademacher複雑性について検討する。
上記の問題に対処するための特徴歪み法(Disout)を提案する。
より高い試験性能を有するディープニューラルネットワークを作製するための特徴写像歪みの優位性を解析し、実証した。
論文 参考訳(メタデータ) (2020-02-23T13:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。