Fluctuation-induced Forces on Nanospheres in External Fields
- URL: http://arxiv.org/abs/2311.10496v1
- Date: Fri, 17 Nov 2023 12:51:19 GMT
- Title: Fluctuation-induced Forces on Nanospheres in External Fields
- Authors: Clemens Jakubec, Pablo Solano, Uro\v{s} Deli\'c, Kanu Sinha
- Abstract summary: We analyze the radiative forces between two nanospheres mediated via the quantum and thermal fluctuations of the electromagnetic field in the presence of an external drive.
We demonstrate that an external squeezed vacuum state creates similar potentials to a laser, despite its zero average intensity.
Considering the nanospheres trapped by optical tweezers, we examine the total interparticle potential as a function of various experimentally relevant parameters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We analyze the radiative forces between two dielectric nanospheres mediated
via the quantum and thermal fluctuations of the electromagnetic field in the
presence of an external drive. We generalize the scattering theory description
of fluctuation forces to include external quantum fields, allowing them to be
in an arbitrary quantum state. The known trapping and optical binding
potentials are recovered for an external coherent state. We demonstrate that an
external squeezed vacuum state creates similar potentials to a laser, despite
its zero average intensity. Moreover, Schr\"odinger cat states of the field can
enhance or suppress the optical potential depending on whether they are odd or
even. Considering the nanospheres trapped by optical tweezers, we examine the
total interparticle potential as a function of various experimentally relevant
parameters, such as the field intensity, polarization, and phase of the
trapping lasers. We demonstrate that an appropriate set of parameters could
produce mutual bound states of the two nanospheres with potential depth as
large as $\sim200$ K. Our results are pertinent to ongoing experiments with
trapped nanospheres in the macroscopic quantum regime, paving the way for
engineering interactions among macroscopic quantum systems.
Related papers
- Photon bunching in high-harmonic emission controlled by quantum light [0.0]
Recent theories have laid the groundwork for understanding how quantum-optical properties affect high-field photonics.
We demonstrate a new experimental approach that transduces some properties of a quantum-optical state through a strong-field nonlinearity.
Our results suggest that perturbing strong-field dynamics with quantum-optical states is a viable way to coherently control the generation of these states at short wavelengths.
arXiv Detail & Related papers (2024-04-08T12:53:42Z) - Quantum coherence and interference of a single moir\'e exciton in
nano-fabricated twisted semiconductor heterobilayers [7.407499080938729]
Moir'e potential acts as periodic quantum confinement for optically generated exciton, generating spatially ordered quantum system.
We have demonstrated a new method to realize the optical observation of quantum coherence and interference of a single moir'e exciton.
The observed quantum coherence and interference of moir'e exciton will facilitate potential application toward quantum technologies based on moir'e quantum systems.
arXiv Detail & Related papers (2023-09-06T10:12:09Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Surface-induced decoherence and heating of charged particles [0.0]
We provide a theoretical toolbox for describing how the rotational and translational quantum dynamics of charged nano- to microscale objects is affected by near metallic and dielectric surfaces.
The resulting quantum master equations describe the coherent surface-particle interaction, due to image charges and Casimir-Polder potentials, as well as surface-induced decoherence and heating.
arXiv Detail & Related papers (2022-03-28T20:49:42Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Many-Body Physics with Ultracold Polar Molecules: Nanostructured
Potential Barriers and Interactions [2.409938612878261]
We design dipolar quantum many-body Hamiltonians that will facilitate the realization of exotic quantum phases.
The main idea is to modulate both single-body potential barriers and two-body dipolar interactions on a spatial scale of tens of nanometers.
arXiv Detail & Related papers (2020-01-31T12:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.