Causal Fairness-Guided Dataset Reweighting using Neural Networks
- URL: http://arxiv.org/abs/2311.10512v1
- Date: Fri, 17 Nov 2023 13:31:19 GMT
- Title: Causal Fairness-Guided Dataset Reweighting using Neural Networks
- Authors: Xuan Zhao and Klaus Broelemann and Salvatore Ruggieri and Gjergji
Kasneci
- Abstract summary: We construct a reweighting scheme of datasets to address causal fairness.
Our approach aims at mitigating bias by considering the causal relationships among variables.
We show that our method can achieve causal fairness on the data while remaining close to the original data for downstream tasks.
- Score: 25.492273448917278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of achieving fairness in machine learning models cannot be
overstated. Recent research has pointed out that fairness should be examined
from a causal perspective, and several fairness notions based on the on Pearl's
causal framework have been proposed. In this paper, we construct a reweighting
scheme of datasets to address causal fairness. Our approach aims at mitigating
bias by considering the causal relationships among variables and incorporating
them into the reweighting process. The proposed method adopts two neural
networks, whose structures are intentionally used to reflect the structures of
a causal graph and of an interventional graph. The two neural networks can
approximate the causal model of the data, and the causal model of
interventions. Furthermore, reweighting guided by a discriminator is applied to
achieve various fairness notions. Experiments on real-world datasets show that
our method can achieve causal fairness on the data while remaining close to the
original data for downstream tasks.
Related papers
- Robust Domain Generalisation with Causal Invariant Bayesian Neural Networks [9.999199798941424]
We propose a Bayesian neural architecture that disentangles the learning of the the data distribution from the inference process mechanisms.
We show theoretically and experimentally that our model approximates reasoning under causal interventions.
arXiv Detail & Related papers (2024-10-08T20:38:05Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
We take a first step towards building causally-aware foundation models for treatment effect estimations.
We propose a novel, theoretically justified method called Causal Inference with Attention (CInA)
arXiv Detail & Related papers (2023-10-01T22:28:34Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Fairness Increases Adversarial Vulnerability [50.90773979394264]
This paper shows the existence of a dichotomy between fairness and robustness, and analyzes when achieving fairness decreases the model robustness to adversarial samples.
Experiments on non-linear models and different architectures validate the theoretical findings in multiple vision domains.
The paper proposes a simple, yet effective, solution to construct models achieving good tradeoffs between fairness and robustness.
arXiv Detail & Related papers (2022-11-21T19:55:35Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - FAIR: Fair Adversarial Instance Re-weighting [0.7829352305480285]
We propose a Fair Adrial Instance Re-weighting (FAIR) method, which uses adversarial training to learn instance weighting function that ensures fair predictions.
To the best of our knowledge, this is the first model that merges reweighting and adversarial approaches by means of a weighting function that can provide interpretable information about fairness of individual instances.
arXiv Detail & Related papers (2020-11-15T10:48:56Z) - FaiR-N: Fair and Robust Neural Networks for Structured Data [10.14835182649819]
We present a novel formulation for training neural networks that considers the distance of data points to the decision boundary.
We show that training with this loss yields more fair and robust neural networks with similar accuracies to models trained without it.
arXiv Detail & Related papers (2020-10-13T01:53:15Z) - Improving Fair Predictions Using Variational Inference In Causal Models [8.557308138001712]
The importance of algorithmic fairness grows with the increasing impact machine learning has on people's lives.
Recent work on fairness metrics shows the need for causal reasoning in fairness constraints.
This research aims to contribute to machine learning techniques which honour our ethical and legal boundaries.
arXiv Detail & Related papers (2020-08-25T08:27:11Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
Causal inferences can be obtained by standard algorithms for the updating of credal nets.
This contribution should be regarded as a systematic approach to represent structural causal models by credal networks.
Experiments show that approximate algorithms for credal networks can immediately be used to do causal inference in real-size problems.
arXiv Detail & Related papers (2020-08-02T11:19:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.