Graph Neural Networks for Pressure Estimation in Water Distribution
Systems
- URL: http://arxiv.org/abs/2311.10579v1
- Date: Fri, 17 Nov 2023 15:30:12 GMT
- Title: Graph Neural Networks for Pressure Estimation in Water Distribution
Systems
- Authors: Huy Truong, Andr\'es Tello, Alexander Lazovik, Victoria Degeler
- Abstract summary: Pressure and flow estimation in Water Distribution Networks (WDN) allows water management companies to optimize their control operations.
We combine physics-based modeling and Graph Neural Networks (GNN), a data-driven approach, to address the pressure estimation problem.
Our GNN-based model estimates the pressure of a large-scale WDN in The Netherlands with a MAE of 1.94mH$$O and a MAPE of 7%.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pressure and flow estimation in Water Distribution Networks (WDN) allows
water management companies to optimize their control operations. For many
years, mathematical simulation tools have been the most common approach to
reconstructing an estimate of the WDN hydraulics. However, pure physics-based
simulations involve several challenges, e.g. partially observable data, high
uncertainty, and extensive manual configuration. Thus, data-driven approaches
have gained traction to overcome such limitations. In this work, we combine
physics-based modeling and Graph Neural Networks (GNN), a data-driven approach,
to address the pressure estimation problem. First, we propose a new data
generation method using a mathematical simulation but not considering temporal
patterns and including some control parameters that remain untouched in
previous works; this contributes to a more diverse training data. Second, our
training strategy relies on random sensor placement making our GNN-based
estimation model robust to unexpected sensor location changes. Third, a
realistic evaluation protocol considers real temporal patterns and additionally
injects the uncertainties intrinsic to real-world scenarios. Finally, a
multi-graph pre-training strategy allows the model to be reused for pressure
estimation in unseen target WDNs. Our GNN-based model estimates the pressure of
a large-scale WDN in The Netherlands with a MAE of 1.94mH$_2$O and a MAPE of
7%, surpassing the performance of previous studies. Likewise, it outperformed
previous approaches on other WDN benchmarks, showing a reduction of absolute
error up to approximately 52% in the best cases.
Related papers
- GAS-Norm: Score-Driven Adaptive Normalization for Non-Stationary Time Series Forecasting in Deep Learning [1.642449952957482]
We show how changes in the mean and variance of the input data can disrupt the predictive capability of a deep neural network (DNN)
We introduce GAS-Norm, a novel methodology for adaptive time series normalization and forecasting based on the combination of a Generalized Autoregressive Score (GAS) model and a Deep Neural Network.
Results show that deep forecasting models improve their performance in 21 out of 25 settings when combined with GAS-Norm compared to other normalization methods.
arXiv Detail & Related papers (2024-10-04T21:26:12Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Streamflow Prediction with Uncertainty Quantification for Water Management: A Constrained Reasoning and Learning Approach [27.984958596544278]
This paper studies a constrained reasoning and learning (CRL) approach where physical laws represented as logical constraints are integrated as a layer in the deep neural network.
To address small data setting, we develop a theoretically-grounded training approach to improve the generalization accuracy of deep models.
arXiv Detail & Related papers (2024-05-31T18:53:53Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - DeepBayes -- an estimator for parameter estimation in stochastic
nonlinear dynamical models [11.917949887615567]
We propose DeepBayes estimators that leverage the power of deep recurrent neural networks in learning an estimator.
The deep recurrent neural network architectures can be trained offline and ensure significant time savings during inference.
We demonstrate the applicability of our proposed method on different example models and perform detailed comparisons with state-of-the-art approaches.
arXiv Detail & Related papers (2022-05-04T18:12:17Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
We investigate the use of PINNs surrogate modeling for turbulent Rayleigh-B'enard convection flows.
We show how it comes to play as a regularization close to the training boundaries which are zones of poor accuracy for standard PINNs.
The predictive accuracy of the surrogate over the entire half a billion DNS coordinates yields errors for all flow variables ranging between [0.3% -- 4%] in the relative L 2 norm.
arXiv Detail & Related papers (2021-03-05T09:48:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.