論文の概要: Human motion trajectory prediction using the Social Force Model for
real-time and low computational cost applications
- arxiv url: http://arxiv.org/abs/2311.10582v1
- Date: Fri, 17 Nov 2023 15:32:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-20 14:18:38.160298
- Title: Human motion trajectory prediction using the Social Force Model for
real-time and low computational cost applications
- Title(参考訳): リアルタイム・低計算コスト応用のための社会力モデルを用いた人間の運動軌跡予測
- Authors: Oscar Gil and Alberto Sanfeliu
- Abstract要約: 新たな軌道予測モデルSoFGAN(Social Force Generative Adversarial Network)を提案する。
SoFGANは、GAN(Generative Adversarial Network)と社会力モデル(Social Force Model, SFM)を使用して、シーン内の衝突を減らす様々な可塑性人軌道を生成する。
提案手法は,現在の最先端モデルよりも UCY や BIWI データセットの方が精度が高く,他の手法と比較して衝突を低減できることを示す。
- 参考スコア(独自算出の注目度): 3.5970055082749655
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human motion trajectory prediction is a very important functionality for
human-robot collaboration, specifically in accompanying, guiding, or
approaching tasks, but also in social robotics, self-driving vehicles, or
security systems. In this paper, a novel trajectory prediction model, Social
Force Generative Adversarial Network (SoFGAN), is proposed. SoFGAN uses a
Generative Adversarial Network (GAN) and Social Force Model (SFM) to generate
different plausible people trajectories reducing collisions in a scene.
Furthermore, a Conditional Variational Autoencoder (CVAE) module is added to
emphasize the destination learning. We show that our method is more accurate in
making predictions in UCY or BIWI datasets than most of the current
state-of-the-art models and also reduces collisions in comparison to other
approaches. Through real-life experiments, we demonstrate that the model can be
used in real-time without GPU's to perform good quality predictions with a low
computational cost.
- Abstract(参考訳): 人間の動きの軌跡予測は、人間とロボットのコラボレーション、特に付随、誘導、または接近するタスクにおいて非常に重要な機能であり、社会ロボティクス、自動運転車、セキュリティシステムにおいても重要である。
本稿では,新しい軌道予測モデルであるsofgan(social force generative adversarial network)を提案する。
SoFGANは、GAN(Generative Adversarial Network)と社会力モデル(Social Force Model, SFM)を使用して、シーン内の衝突を減らす様々な可塑性人軌道を生成する。
さらに、目標学習を強調するために、条件付き変分オートエンコーダ(CVAE)モジュールが追加される。
提案手法は,現在の最先端モデルよりも UCY や BIWI データセットの方が精度が高く,他の手法と比較して衝突を低減できることを示す。
実生活実験により,gpuを使わずにリアルタイムにモデルを用いて,低計算コストで高品質な予測を行うことを実証した。
関連論文リスト
- VidMan: Exploiting Implicit Dynamics from Video Diffusion Model for Effective Robot Manipulation [79.00294932026266]
VidManは、安定性を高め、データ利用効率を向上させるために、2段階のトレーニングメカニズムを使用する新しいフレームワークである。
我々のフレームワークは、CALVINベンチマークで最先端のベースラインモデルGR-1を上回り、11.7%の相対的な改善を実現し、OXEの小規模データセットで9%以上の精度向上を示す。
論文 参考訳(メタデータ) (2024-11-14T03:13:26Z) - Efficient Motion Prediction: A Lightweight & Accurate Trajectory Prediction Model With Fast Training and Inference Speed [56.27022390372502]
我々は,1つのGPU上で数時間のトレーニングをしながら,競争力の高いベンチマーク結果を実現する,新しい効率的な動き予測モデルを提案する。
その低推論レイテンシは、特に限られたコンピューティングリソースを持つ自律アプリケーションへのデプロイに適している。
論文 参考訳(メタデータ) (2024-09-24T14:58:27Z) - Navigating the Human Maze: Real-Time Robot Pathfinding with Generative Imitation Learning [0.0]
目標条件付き自己回帰モデルを導入し,個人間の複雑な相互作用を捉える。
このモデルは、潜在的なロボット軌道サンプルを処理し、周囲の個人の反応を予測する。
論文 参考訳(メタデータ) (2024-08-07T14:32:41Z) - Less is More: Efficient Brain-Inspired Learning for Autonomous Driving Trajectory Prediction [26.14918154872732]
本稿では,Human-Like Trajectory Prediction Model (H++)を提案する。
H++は自律運転(AD)の軌道予測を改善するために人間の認知過程をエミュレートする
NGSIM、HighD、MoCADベンチマークを用いて評価すると、H++は既存のモデルよりも優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-07-09T16:42:17Z) - Enhanced Human-Robot Collaboration using Constrained Probabilistic
Human-Motion Prediction [5.501477817904299]
本研究では,人間の関節の制約とシーンの制約を組み込んだ新しい動き予測フレームワークを提案する。
人間の腕のキネマティックモデルでテストされ、UR5ロボットアームと人間とロボットの協調的な設定で実装されている。
論文 参考訳(メタデータ) (2023-10-05T05:12:14Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
群衆における人間予測は、社会的相互作用をモデル化し、衝突のないマルチモーダル分布を出力するという課題を提示する。
SGANv2は、動き時間相互作用モデリングと変圧器に基づく識別器設計を備えた安全に配慮したSGANアーキテクチャである。
論文 参考訳(メタデータ) (2022-09-25T15:18:56Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
本研究では,都市環境における歩行者位置予測を目的とした,簡易かつ効果的な歩行者軌道予測モデルを提案する。
我々のモデルは、複数のアテンションブロックとトランスフォーマーを反復的に実行できるニューラルネットワークアーキテクチャである。
ソーシャルマスク, 動的モデル, ソーシャルプーリング層, 複雑なグラフのような構造を明示的に導入することなく, SoTAモデルと同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T07:49:48Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
本稿では,歩行者の軌跡を予測する物理に基づくニューラルネットワークを提案する。
我々は、現実的な予測、予測性能、および「解釈可能性」に関するモデルを定量的に質的に評価する。
最初の結果は、合成データセットでのみ訓練されたモデルであっても、最先端の精度よりも現実的で解釈可能な軌道を予測できることを示唆している。
論文 参考訳(メタデータ) (2022-02-06T14:58:09Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
深層学習と物理運動モデルを組み合わせたハイブリッドアプローチを提案する。
ハイブリッドモデルの一部として,ディープニューラルネットワークの出力範囲を制限することで,解釈可能性を実現する。
その結果, ハイブリッドモデルでは, 既存のディープラーニング手法に比べて精度を低下させることなく, モデル解釈性が向上できることがわかった。
論文 参考訳(メタデータ) (2021-03-11T15:21:08Z) - Pedestrian Trajectory Prediction with Convolutional Neural Networks [0.3787359747190393]
本稿では,新しい2次元畳み込みモデルを導入し,歩行者軌道予測への新たなアプローチを提案する。
この新モデルはリカレントモデルより優れており、ETHとTrajNetデータセットの最先端の結果が得られる。
また,歩行者の位置と強力なデータ拡張手法を効果的に表現するシステムを提案する。
論文 参考訳(メタデータ) (2020-10-12T15:51:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。