論文の概要: Less is More: Efficient Brain-Inspired Learning for Autonomous Driving Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2407.07020v1
- Date: Tue, 9 Jul 2024 16:42:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 17:17:48.525423
- Title: Less is More: Efficient Brain-Inspired Learning for Autonomous Driving Trajectory Prediction
- Title(参考訳): より少ない:自律走行軌道予測のための効率的な脳誘発学習
- Authors: Haicheng Liao, Yongkang Li, Zhenning Li, Chengyue Wang, Chunlin Tian, Yuming Huang, Zilin Bian, Kaiqun Zhu, Guofa Li, Ziyuan Pu, Jia Hu, Zhiyong Cui, Chengzhong Xu,
- Abstract要約: 本稿では,Human-Like Trajectory Prediction Model (H++)を提案する。
H++は自律運転(AD)の軌道予測を改善するために人間の認知過程をエミュレートする
NGSIM、HighD、MoCADベンチマークを用いて評価すると、H++は既存のモデルよりも優れたパフォーマンスを示している。
- 参考スコア(独自算出の注目度): 26.14918154872732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately and safely predicting the trajectories of surrounding vehicles is essential for fully realizing autonomous driving (AD). This paper presents the Human-Like Trajectory Prediction model (HLTP++), which emulates human cognitive processes to improve trajectory prediction in AD. HLTP++ incorporates a novel teacher-student knowledge distillation framework. The "teacher" model equipped with an adaptive visual sector, mimics the dynamic allocation of attention human drivers exhibit based on factors like spatial orientation, proximity, and driving speed. On the other hand, the "student" model focuses on real-time interaction and human decision-making, drawing parallels to the human memory storage mechanism. Furthermore, we improve the model's efficiency by introducing a new Fourier Adaptive Spike Neural Network (FA-SNN), allowing for faster and more precise predictions with fewer parameters. Evaluated using the NGSIM, HighD, and MoCAD benchmarks, HLTP++ demonstrates superior performance compared to existing models, which reduces the predicted trajectory error with over 11% on the NGSIM dataset and 25% on the HighD datasets. Moreover, HLTP++ demonstrates strong adaptability in challenging environments with incomplete input data. This marks a significant stride in the journey towards fully AD systems.
- Abstract(参考訳): 周囲の車両の軌道を正確にかつ安全に予測することは、自動運転(AD)の完全実現に不可欠である。
本稿では,ADにおける軌道予測を改善するために,人間の認知過程をエミュレートするHuman-Like Trajectory Prediction Model (HLTP++)を提案する。
HLTP++は教師による新しい知識蒸留フレームワークを取り入れている。
適応的な視覚セクターを備えた「教師」モデルは、空間的指向性、近接性、運転速度といった要因に基づいて、人間のドライバーが示す注意の動的割り当てを模倣する。
一方、「学生」モデルは、リアルタイムのインタラクションと人間の意思決定に焦点を合わせ、人間の記憶記憶機構と平行に描画する。
さらに,新しいFourier Adaptive Spike Neural Network (FA-SNN)を導入し,パラメータの少ない高速かつ高精度な予測を可能にすることにより,モデルの効率を向上させる。
NGSIM、HighD、MoCADベンチマークを用いて評価すると、HLTP++は既存のモデルよりも優れた性能を示し、NGSIMデータセットでは11%以上、HighDデータセットでは25%以上の予測軌道誤差が減少する。
さらに、HLTP++は、不完全な入力データを持つ挑戦環境において、強い適応性を示す。
これは完全なADシステムへの旅において、大きな一歩を踏み出した。
関連論文リスト
- DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Autonomous Driving [55.53171248839489]
我々は、エンドツーエンドの自動運転のためのエゴ中心の完全スパースパラダイムであるDiFSDを提案する。
特に、DiFSDは主にスパース知覚、階層的相互作用、反復的な運動プランナーから構成される。
nuScenesデータセットで行った実験は、DiFSDの優れた計画性能と優れた効率を示す。
論文 参考訳(メタデータ) (2024-09-15T15:55:24Z) - MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
適応型パーソナライズされた自動車追従フレームワークであるMetaFollowerを提案する。
まず,モデルに依存しないメタラーニング(MAML)を用いて,様々なCFイベントから共通運転知識を抽出する。
さらに、Long Short-Term Memory (LSTM) と Intelligent Driver Model (IDM) を組み合わせて、時間的不均一性を高い解釈性で反映する。
論文 参考訳(メタデータ) (2024-06-23T15:30:40Z) - GRANP: A Graph Recurrent Attentive Neural Process Model for Vehicle Trajectory Prediction [3.031375888004876]
車両軌道予測のためのGRANP(Graph Recurrent Attentive Neural Process)という新しいモデルを提案する。
GRANPには、決定論的パスと遅延パスを持つエンコーダと、予測のためのデコーダが含まれている。
我々は,GRANPが最先端の結果を達成し,不確実性を効率的に定量化できることを示す。
論文 参考訳(メタデータ) (2024-04-09T05:51:40Z) - A Cognitive-Based Trajectory Prediction Approach for Autonomous Driving [21.130543517747995]
本稿では,教師による知識蒸留の枠組みを取り入れたHuman-Like Trajectory Prediction (H)モデルを提案する。
教師」モデルは人間の脳、特に後頭葉と側頭葉の機能の視覚的処理を模倣する。
学生」モデルはリアルタイムのインタラクションと意思決定に焦点を合わせ、正確な予測のために重要な知覚的手がかりを捉えます。
論文 参考訳(メタデータ) (2024-02-29T15:22:26Z) - RACER: Rational Artificial Intelligence Car-following-model Enhanced by
Reality [51.244807332133696]
本稿では,アダプティブ・クルーズ・コントロール(ACC)運転行動を予測する,最先端の深層学習車追従モデルであるRACERを紹介する。
従来のモデルとは異なり、RACERは実走行の重要な要素であるRDC(Rational Driving Constraints)を効果的に統合している。
RACERはアクセラレーション、ベロシティ、スペーシングといった主要なメトリクスを網羅し、ゼロ違反を登録する。
論文 参考訳(メタデータ) (2023-12-12T06:21:30Z) - BAT: Behavior-Aware Human-Like Trajectory Prediction for Autonomous
Driving [24.123577277806135]
我々は行動認識軌道予測モデル(BAT)を考案した。
我々のモデルは行動認識、相互作用認識、優先度認識、位置認識モジュールから構成される。
次世代シミュレーション(NGSIM)、ハイウェイドローン(HighD)、ラウンドアバウンドドローン(RounD)、マカオコネクテッド自律運転(MoCAD)データセットにおけるBATの性能を評価する。
論文 参考訳(メタデータ) (2023-12-11T13:27:51Z) - Human motion trajectory prediction using the Social Force Model for
real-time and low computational cost applications [3.5970055082749655]
新たな軌道予測モデルSoFGAN(Social Force Generative Adversarial Network)を提案する。
SoFGANは、GAN(Generative Adversarial Network)と社会力モデル(Social Force Model, SFM)を使用して、シーン内の衝突を減らす様々な可塑性人軌道を生成する。
提案手法は,現在の最先端モデルよりも UCY や BIWI データセットの方が精度が高く,他の手法と比較して衝突を低減できることを示す。
論文 参考訳(メタデータ) (2023-11-17T15:32:21Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
軌道予測は多くの分野において広く研究され、多くのモデルベースおよびモデルフリーな手法が研究されている。
ニューラル微分方程式モデルに基づく新しい手法を提案する。
我々の新しいモデル(ニューラル社会物理学またはNSP)は、学習可能なパラメータを持つ明示的な物理モデルを使用するディープニューラルネットワークである。
論文 参考訳(メタデータ) (2022-07-21T12:11:18Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - Attentional-GCNN: Adaptive Pedestrian Trajectory Prediction towards
Generic Autonomous Vehicle Use Cases [10.41902340952981]
本稿では,グラフのエッジに注目重みを割り当てることで,歩行者間の暗黙的相互作用に関する情報を集約する,GCNNに基づく新しいアプローチであるAttentional-GCNNを提案する。
提案手法は,10%平均変位誤差 (ADE) と12%最終変位誤差 (FDE) を高速な推論速度で向上することを示す。
論文 参考訳(メタデータ) (2020-11-23T03:13:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。