論文の概要: Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
- arxiv url: http://arxiv.org/abs/2311.10653v2
- Date: Tue, 20 Aug 2024 17:21:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 20:41:04.601230
- Title: Learning Realistic Joint Space Boundaries for Range of Motion Analysis of Healthy and Impaired Human Arms
- Title(参考訳): 健常者・障害者の運動解析における現実的共同空間境界の学習
- Authors: Shafagh Keyvanian, Michelle J. Johnson, Nadia Figueroa,
- Abstract要約: 本研究では,現実的な解剖学的制約のある上層域の運動境界を,モーションキャプチャーデータから学習するためのデータ駆動手法を提案する。
また,健常腕と障害腕の比較において,能力・障害の定量的評価を行う指標(II)を提案する。
- 参考スコア(独自算出の注目度): 0.5530212768657544
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: A realistic human kinematic model that satisfies anatomical constraints is essential for human-robot interaction, biomechanics and robot-assisted rehabilitation. Modeling realistic joint constraints, however, is challenging as human arm motion is constrained by joint limits, inter- and intra-joint dependencies, self-collisions, individual capabilities and muscular or neurological constraints which are difficult to represent. Hence, physicians and researchers have relied on simple box-constraints, ignoring important anatomical factors. In this paper, we propose a data-driven method to learn realistic anatomically constrained upper-limb range of motion (RoM) boundaries from motion capture data. This is achieved by fitting a one-class support vector machine to a dataset of upper-limb joint space exploration motions with an efficient hyper-parameter tuning scheme. Our approach outperforms similar works focused on valid RoM learning. Further, we propose an impairment index (II) metric that offers a quantitative assessment of capability/impairment when comparing healthy and impaired arms. We validate the metric on healthy subjects physically constrained to emulate hemiplegia and different disability levels as stroke patients.
- Abstract(参考訳): 解剖学的制約を満たす現実的な人体運動モデルは、人間とロボットの相互作用、生体力学、ロボットによるリハビリテーションに不可欠である。
しかし、現実的な関節の制約をモデル化することは、人間の腕の動きが関節の限界、関節内および関節内依存関係、自己衝突、個々の能力、表現が難しい筋肉的または神経学的制約によって制約されるため困難である。
そのため、医師や研究者は、重要な解剖学的要因を無視して、単純な箱の制約を頼りにしてきた。
本稿では,モーションキャプチャーデータから,現実的な解剖学的制約付き上肢運動境界(RoM)を学習するためのデータ駆動手法を提案する。
これは、高パラメータの効率的なチューニング手法を用いて、上肢の宇宙探査運動のデータセットに一級支持ベクトルマシンを組み込むことによって達成される。
当社のアプローチは,RoM学習の有効性を重視した類似の作業よりも優れています。
さらに,健常腕と障害腕の比較において,能力・障害の定量的評価を行う障害指標(II)尺度を提案する。
脳卒中患者の健常者における片麻痺と障害レベルの違いをエミュレートするため,健常者を対象に測定値の検証を行った。
関連論文リスト
- Continual Imitation Learning for Prosthetic Limbs [0.7922558880545526]
モーター付きバイオニック手足は約束を提供するが、その実用性は様々な環境での人間の運動の進化する相乗効果を模倣することに依存する。
本稿では, カメラを用いたモーションキャプチャとウェアラブルセンサデータを活用したバイオニック補綴用アプリケーションの新しいモデルを提案する。
本稿では,マルチタスク,継続的な適応,動きの予測,移動の洗練が可能なモデルを提案する。
論文 参考訳(メタデータ) (2024-05-02T09:22:54Z) - MS-MANO: Enabling Hand Pose Tracking with Biomechanical Constraints [50.61346764110482]
筋骨格系と学習可能なパラメトリックハンドモデルMANOを統合し,MS-MANOを作成する。
このモデルは骨格系を駆動する筋肉と腱の力学をエミュレートし、結果として生じるトルク軌跡に生理学的に現実的な制約を与える。
また,マルチ層パーセプトロンネットワークによる初期推定ポーズを改良する,ループ式ポーズ改善フレームワークBioPRを提案する。
論文 参考訳(メタデータ) (2024-04-16T02:18:18Z) - Enhancing Joint Motion Prediction for Individuals with Limb Loss Through
Model Reprogramming [0.0]
手足の喪失による運動障害は、世界中の何百万人もの個人が直面している重要な課題である。
人工装具などの高度な補助技術の開発は、切断者の生活の質を大幅に向上させる可能性がある。
このような技術の設計において重要な要素は、行方不明肢の基準関節運動の正確な予測である。
論文 参考訳(メタデータ) (2024-03-11T10:10:45Z) - InterControl: Zero-shot Human Interaction Generation by Controlling Every Joint [67.6297384588837]
関節間の所望距離を維持するために,新しい制御可能な運動生成手法であるInterControlを導入する。
そこで本研究では,既成の大規模言語モデルを用いて,ヒューマンインタラクションのための結合ペア間の距離を生成できることを実証した。
論文 参考訳(メタデータ) (2023-11-27T14:32:33Z) - Enhanced Human-Robot Collaboration using Constrained Probabilistic
Human-Motion Prediction [5.501477817904299]
本研究では,人間の関節の制約とシーンの制約を組み込んだ新しい動き予測フレームワークを提案する。
人間の腕のキネマティックモデルでテストされ、UR5ロボットアームと人間とロボットの協調的な設定で実装されている。
論文 参考訳(メタデータ) (2023-10-05T05:12:14Z) - Natural and Robust Walking using Reinforcement Learning without
Demonstrations in High-Dimensional Musculoskeletal Models [29.592874007260342]
人間は複雑な自然環境の中を歩く頑丈な二足歩行で運動します。
神経系が筋骨格の冗長性をどのように解決し、多目的制御問題を解決するかは、まだ完全には分かっていない。
論文 参考訳(メタデータ) (2023-09-06T13:20:31Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - Towards Autonomous Atlas-based Ultrasound Acquisitions in Presence of
Articulated Motion [48.52403516006036]
本稿では、自律型ロボットUS手足のスキャンを可能にする視覚ベースのアプローチを提案する。
この目的のために、アノテートされた血管構造を有するヒト腕のアトラスMRIテンプレートを使用して、軌跡を生成する。
いずれの場合も、このシステムはボランティアの手足で計画された血管構造を取得することができる。
論文 参考訳(メタデータ) (2022-08-10T15:39:20Z) - Online Body Schema Adaptation through Cost-Sensitive Active Learning [63.84207660737483]
この作業は、icubロボットシミュレータの7dofアームを使用して、シミュレーション環境で実行された。
コストに敏感な能動学習手法は最適な関節構成を選択するために用いられる。
その結果,コスト依存型能動学習は標準的な能動学習手法と同等の精度を示し,実行運動の約半分を減らした。
論文 参考訳(メタデータ) (2021-01-26T16:01:02Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
社会支援ロボットの研究は、神経学的および筋骨格疾患の患者に対する理学療法セッションを増強し、支援する可能性がある。
本稿では,運動の質を予測するために,患者個別の運動の運動特性を動的に選択できる社会支援ロボットのインタラクティブなアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-13T16:12:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。