Safe Navigation: Training Autonomous Vehicles using Deep Reinforcement
Learning in CARLA
- URL: http://arxiv.org/abs/2311.10735v1
- Date: Mon, 23 Oct 2023 04:23:07 GMT
- Title: Safe Navigation: Training Autonomous Vehicles using Deep Reinforcement
Learning in CARLA
- Authors: Ghadi Nehme, Tejas Y. Deo
- Abstract summary: The goal of this project is to train autonomous vehicles to make decisions to navigate in uncertain environments using deep reinforcement learning techniques.
The simulator provides a realistic and urban environment for training and testing self-driving models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Autonomous vehicles have the potential to revolutionize transportation, but
they must be able to navigate safely in traffic before they can be deployed on
public roads. The goal of this project is to train autonomous vehicles to make
decisions to navigate in uncertain environments using deep reinforcement
learning techniques using the CARLA simulator. The simulator provides a
realistic and urban environment for training and testing self-driving models.
Deep Q-Networks (DQN) are used to predict driving actions. The study involves
the integration of collision sensors, segmentation, and depth camera for better
object detection and distance estimation. The model is tested on 4 different
trajectories in presence of different types of 4-wheeled vehicles and
pedestrians. The segmentation and depth cameras were utilized to ensure
accurate localization of objects and distance measurement. Our proposed method
successfully navigated the self-driving vehicle to its final destination with a
high success rate without colliding with other vehicles, pedestrians, or going
on the sidewalk. To ensure the optimal performance of our reinforcement
learning (RL) models in navigating complex traffic scenarios, we implemented a
pre-processing step to reduce the state space. This involved processing the
images and sensor output before feeding them into the model. Despite
significantly decreasing the state space, our approach yielded robust models
that successfully navigated through traffic with high levels of safety and
accuracy.
Related papers
- Comprehensive Training and Evaluation on Deep Reinforcement Learning for
Automated Driving in Various Simulated Driving Maneuvers [0.4241054493737716]
This study implements, evaluating, and comparing the two DRL algorithms, Deep Q-networks (DQN) and Trust Region Policy Optimization (TRPO)
Models trained on the designed ComplexRoads environment can adapt well to other driving maneuvers with promising overall performance.
arXiv Detail & Related papers (2023-06-20T11:41:01Z) - Safe Real-World Autonomous Driving by Learning to Predict and Plan with
a Mixture of Experts [3.2230833657560503]
We propose a distribution over multiple future trajectories for both the self-driving vehicle and other road agents.
During inference, we select the planning trajectory that minimizes a cost taking into account safety and the predicted probabilities.
We successfully deploy it on a self-driving vehicle on urban public roads, confirming that it drives safely without compromising comfort.
arXiv Detail & Related papers (2022-11-03T20:16:24Z) - Threat Detection In Self-Driving Vehicles Using Computer Vision [0.0]
We propose a threat detection mechanism for autonomous self-driving cars using dashcam videos.
There are four major components, namely, YOLO to identify the objects, advanced lane detection algorithm, multi regression model to measure the distance of the object from the camera.
The final accuracy of our proposed Threat Detection Model (TDM) is 82.65%.
arXiv Detail & Related papers (2022-09-06T12:01:07Z) - Exploring the trade off between human driving imitation and safety for
traffic simulation [0.34410212782758043]
We show that a trade-off exists between imitating human driving and maintaining safety when learning driving policies.
We propose a multi objective learning algorithm (MOPPO) that improves both objectives together.
arXiv Detail & Related papers (2022-08-09T14:30:19Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Self-Supervised Steering Angle Prediction for Vehicle Control Using
Visual Odometry [55.11913183006984]
We show how a model can be trained to control a vehicle's trajectory using camera poses estimated through visual odometry methods.
We propose a scalable framework that leverages trajectory information from several different runs using a camera setup placed at the front of a car.
arXiv Detail & Related papers (2021-03-20T16:29:01Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - PLOP: Probabilistic poLynomial Objects trajectory Planning for
autonomous driving [8.105493956485583]
We use a conditional imitation learning algorithm to predict trajectories for ego vehicle and its neighbors.
Our approach is computationally efficient and relies only on on-board sensors.
We evaluate our method offline on the publicly available dataset nuScenes.
arXiv Detail & Related papers (2020-03-09T16:55:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.