Point Cloud Self-supervised Learning via 3D to Multi-view Masked Learner
- URL: http://arxiv.org/abs/2311.10887v2
- Date: Sun, 27 Jul 2025 21:46:18 GMT
- Title: Point Cloud Self-supervised Learning via 3D to Multi-view Masked Learner
- Authors: Zhimin Chen, Xuewei Chen, Xiao Guo, Yingwei Li, Longlong Jing, Liang Yang, Bing Li,
- Abstract summary: We introduce a 3D to multi-view autoencoder that reconstructs point clouds and multi-view images from 3D and projected 2D features.<n>A novel two-stage self-training strategy is proposed to align 2D and 3D representations.<n>Our method outperforms state-of-the-art counterparts across various downstream tasks, including 3D classification, part segmentation, and object detection.
- Score: 19.908670991088556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, multi-modal masked autoencoders (MAE) has been introduced in 3D self-supervised learning, offering enhanced feature learning by leveraging both 2D and 3D data to capture richer cross-modal representations. However, these approaches have two limitations: (1) they inefficiently require both 2D and 3D modalities as inputs, even though the inherent multi-view properties of 3D point clouds already contain 2D modality. (2) input 2D modality causes the reconstruction learning to unnecessarily rely on visible 2D information, hindering 3D geometric representation learning. To address these challenges, we propose a 3D to Multi-View Learner (Multi-View ML) that only utilizes 3D modalities as inputs and effectively capture rich spatial information in 3D point clouds. Specifically, we first project 3D point clouds to multi-view 2D images at the feature level based on 3D-based pose. Then, we introduce two components: (1) a 3D to multi-view autoencoder that reconstructs point clouds and multi-view images from 3D and projected 2D features; (2) a multi-scale multi-head (MSMH) attention mechanism that facilitates local-global information interactions in each decoder transformer block through attention heads at various scales. Additionally, a novel two-stage self-training strategy is proposed to align 2D and 3D representations. Our method outperforms state-of-the-art counterparts across various downstream tasks, including 3D classification, part segmentation, and object detection.
Related papers
- TriCLIP-3D: A Unified Parameter-Efficient Framework for Tri-Modal 3D Visual Grounding based on CLIP [34.99141865569255]
3D visual grounding allows an embodied agent to understand visual information in real-world 3D environments based on human instructions.<n>Existing 3D visual grounding methods rely on separate encoders for different modalities.<n>We propose a unified 2D pre-trained multi-modal network to process all three modalities.
arXiv Detail & Related papers (2025-07-20T10:28:06Z) - Unifying 2D and 3D Vision-Language Understanding [85.84054120018625]
We introduce UniVLG, a unified architecture for 2D and 3D vision-language learning.<n>UniVLG bridges the gap between existing 2D-centric models and the rich 3D sensory data available in embodied systems.
arXiv Detail & Related papers (2025-03-13T17:56:22Z) - Weakly Supervised Monocular 3D Detection with a Single-View Image [58.57978772009438]
Monocular 3D detection aims for precise 3D object localization from a single-view image.
We propose SKD-WM3D, a weakly supervised monocular 3D detection framework.
We show that SKD-WM3D surpasses the state-of-the-art clearly and is even on par with many fully supervised methods.
arXiv Detail & Related papers (2024-02-29T13:26:47Z) - MM-Point: Multi-View Information-Enhanced Multi-Modal Self-Supervised 3D
Point Cloud Understanding [4.220064723125481]
Multi-view 2D information can provide superior self-supervised signals for 3D objects.
MM-Point is driven by intra-modal and inter-modal similarity objectives.
It achieves a peak accuracy of 92.4% on the synthetic dataset ModelNet40, and a top accuracy of 87.8% on the real-world dataset ScanObjectNN.
arXiv Detail & Related papers (2024-02-15T15:10:17Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
We present a novel framework that adapts various foundational models for the 3D point cloud segmentation task.
Our approach involves making initial predictions of 2D semantic masks using different large vision models.
To generate robust 3D semantic pseudo labels, we introduce a semantic label fusion strategy that effectively combines all the results via voting.
arXiv Detail & Related papers (2023-11-03T15:41:15Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
This paper proposes a novel approach to point-cloud pre-training that learns 3D representations by leveraging pre-trained 2D networks.
We train the 3D feature extraction network with the help of the novel 2D knowledge transfer loss.
Experimental results demonstrate that our pre-trained model can be successfully transferred to various downstream tasks.
arXiv Detail & Related papers (2023-06-05T03:14:54Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) have shown promising performance in self-supervised learning for 2D and 3D computer vision.
We propose Joint-MAE, a 2D-3D joint MAE framework for self-supervised 3D point cloud pre-training.
arXiv Detail & Related papers (2023-02-27T17:56:18Z) - Learning 3D Representations from 2D Pre-trained Models via
Image-to-Point Masked Autoencoders [52.91248611338202]
We propose an alternative to obtain superior 3D representations from 2D pre-trained models via Image-to-Point Masked Autoencoders, named as I2P-MAE.
By self-supervised pre-training, we leverage the well learned 2D knowledge to guide 3D masked autoencoding.
I2P-MAE attains the state-of-the-art 90.11% accuracy, +3.68% to the second-best, demonstrating superior transferable capacity.
arXiv Detail & Related papers (2022-12-13T17:59:20Z) - PointMCD: Boosting Deep Point Cloud Encoders via Multi-view Cross-modal
Distillation for 3D Shape Recognition [55.38462937452363]
We propose a unified multi-view cross-modal distillation architecture, including a pretrained deep image encoder as the teacher and a deep point encoder as the student.
By pair-wise aligning multi-view visual and geometric descriptors, we can obtain more powerful deep point encoders without exhausting and complicated network modification.
arXiv Detail & Related papers (2022-07-07T07:23:20Z) - Point-M2AE: Multi-scale Masked Autoencoders for Hierarchical Point Cloud
Pre-training [56.81809311892475]
Masked Autoencoders (MAE) have shown great potentials in self-supervised pre-training for language and 2D image transformers.
We propose Point-M2AE, a strong Multi-scale MAE pre-training framework for hierarchical self-supervised learning of 3D point clouds.
arXiv Detail & Related papers (2022-05-28T11:22:53Z) - Learning Multi-View Aggregation In the Wild for Large-Scale 3D Semantic
Segmentation [3.5939555573102853]
Recent works on 3D semantic segmentation propose to exploit the synergy between images and point clouds by processing each modality with a dedicated network.
We propose an end-to-end trainable multi-view aggregation model leveraging the viewing conditions of 3D points to merge features from images taken at arbitrary positions.
Our method can combine standard 2D and 3D networks and outperforms both 3D models operating on colorized point clouds and hybrid 2D/3D networks.
arXiv Detail & Related papers (2022-04-15T17:10:48Z) - Sparse Fuse Dense: Towards High Quality 3D Detection with Depth
Completion [31.52721107477401]
Current LiDAR-only 3D detection methods inevitably suffer from the sparsity of point clouds.
We present a novel multi-modal framework SFD (Sparse Fuse Dense), which utilizes pseudo point clouds generated from depth completion.
Our method holds the highest entry on the KITTI car 3D object detection leaderboard, demonstrating the effectiveness of our SFD.
arXiv Detail & Related papers (2022-03-18T07:56:35Z) - CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D
Point Cloud Understanding [2.8661021832561757]
CrossPoint is a simple cross-modal contrastive learning approach to learn transferable 3D point cloud representations.
Our approach outperforms the previous unsupervised learning methods on a diverse range of downstream tasks including 3D object classification and segmentation.
arXiv Detail & Related papers (2022-03-01T18:59:01Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object
Detection [101.20784125067559]
We propose a new architecture, namely Hallucinated Hollow-3D R-CNN, to address the problem of 3D object detection.
In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view.
The 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation.
arXiv Detail & Related papers (2021-07-30T02:00:06Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Self-supervised Feature Learning by Cross-modality and Cross-view
Correspondences [32.01548991331616]
This paper presents a novel self-supervised learning approach to learn both 2D image features and 3D point cloud features.
It exploits cross-modality and cross-view correspondences without using any annotated human labels.
The effectiveness of the learned 2D and 3D features is evaluated by transferring them on five different tasks.
arXiv Detail & Related papers (2020-04-13T02:57:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.