論文の概要: Closely-Spaced Object Classification Using MuyGPyS
- arxiv url: http://arxiv.org/abs/2311.10904v1
- Date: Fri, 17 Nov 2023 22:52:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 13:31:06.663364
- Title: Closely-Spaced Object Classification Using MuyGPyS
- Title(参考訳): MuyGPySを用いた近接空間オブジェクト分類
- Authors: Kerianne Pruett, Nathan McNaughton, and Michael Schneider
- Abstract要約: 本稿では,光空間領域認識(SDA)アルゴリズムにおいて,近接空間オブジェクト(CSO)を検出する新しい手法を提案する。
我々はガウス過程のピソンパッケージであるMuyGPySを用いて、シミュレーション衛星間の角分離と大きさ差の関数として分類精度を検証した。
MuyGPySは、特により困難な状況下で、従来の機械学習手法よりも優れています。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately detecting rendezvous and proximity operations (RPO) is crucial for
understanding how objects are behaving in the space domain. However, detecting
closely-spaced objects (CSO) is challenging for ground-based optical space
domain awareness (SDA) algorithms as two objects close together along the
line-of-sight can appear blended as a single object within the point-spread
function (PSF) of the optical system. Traditional machine learning methods can
be useful for differentiating between singular objects and closely-spaced
objects, but many methods require large training sample sizes or high
signal-to-noise conditions. The quality and quantity of realistic data make
probabilistic classification methods a superior approach, as they are better
suited to handle these data inadequacies. We present CSO classification results
using the Gaussian process python package, MuyGPyS, and examine classification
accuracy as a function of angular separation and magnitude difference between
the simulated satellites. This orbit-independent analysis is done on highly
accurate simulated SDA images that emulate realistic ground-based
commercial-of-the-shelf (COTS) optical sensor observations of CSOs. We find
that MuyGPyS outperforms traditional machine learning methods, especially under
more challenging circumstances.
- Abstract(参考訳): 空間領域におけるオブジェクトの振舞いを理解するためには、正確なランデブーと近接操作(RPO)が不可欠である。
しかし,2つの物体が直視線に沿って近接している場合,光学系のPSF(point-spread function)内に1つの物体として混在しているため,光学空間領域認識(SDA)アルゴリズムではCSO検出が困難である。
従来の機械学習手法は特異物体と密接な空間を持つ物体を区別するのに有用であるが、多くの手法ではサンプルサイズや高い信号対雑音条件を必要とする。
現実的なデータの品質と量によって、それらの不適切なデータを扱うのに適するため、確率的分類手法はより優れたアプローチとなる。
ガウス過程pythonパッケージであるmuygpysを用いてcso分類結果を示し,角分離関数としての分類精度とシミュレーション衛星間の大きさ差を検討した。
この軌道に依存しない分析は、CSOの現実的な地上型商用(COTS)光学センサ観測をエミュレートする高精度なSDA画像に基づいて行われる。
muygpysは、特に難しい状況下で、従来の機械学習手法よりも優れています。
関連論文リスト
- Vision-Based Detection of Uncooperative Targets and Components on Small Satellites [6.999319023465766]
宇宙デブリと不活性衛星は、運用宇宙船の安全性と完全性に脅威をもたらす。
コンピュータビジョンモデルの最近の進歩は、そのような非協調的な目標を追跡する既存の方法を改善するために利用することができる。
本稿では,これらの物体を学習とコンピュータビジョンを用いて識別・監視する自律検出モデルを提案する。
論文 参考訳(メタデータ) (2024-08-22T02:48:13Z) - Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning [50.84938730450622]
数理推論におけるOOD検出にトラジェクトリボラティリティを用いたトラジェクトリベースのTVスコアを提案する。
本手法は, 数学的推論シナリオ下でのGLM上での従来のアルゴリズムよりも優れる。
提案手法は,複数選択質問などの出力空間における高密度特徴を持つアプリケーションに拡張することができる。
論文 参考訳(メタデータ) (2024-05-22T22:22:25Z) - Inferring Atmospheric Properties of Exoplanets with Flow Matching and
Neural Importance Sampling [10.847353970405285]
大気の探査は、観測された光スペクトルから大気パラメータを推定することで外惑星を特徴づける。
ネストサンプリングのような従来の手法は計算コストが高く、機械学習(ML)に基づくソリューションへの関心を喚起する。
まず、新しいMLベースのAR手法として、フローマッチング後推定(FMPE)について検討し、その場合、神経後推定(NPE)よりも正確であることを示す。
次に、FMPEとNPEを併用して重要サンプリングを行い、どちらの手法も精度とシミュレーション効率においてネストサンプリングに優れることを示した。
論文 参考訳(メタデータ) (2023-12-13T17:12:03Z) - Combining multi-spectral data with statistical and deep-learning models
for improved exoplanet detection in direct imaging at high contrast [39.90150176899222]
太陽系外惑星の信号は、いくつかの観測と専用の検出アルゴリズムを組み合わせることでのみ識別できる。
我々は,観測結果から直接,ニュアンスの空間的,時間的,スペクトル的特性のモデルを学ぶ。
その後、畳み込みニューラルネットワーク(CNN)が教師ありの方法で訓練され、合成源の残像を検出する。
論文 参考訳(メタデータ) (2023-06-21T13:42:07Z) - Performance Study of YOLOv5 and Faster R-CNN for Autonomous Navigation
around Non-Cooperative Targets [0.0]
本稿では,カメラと機械学習アルゴリズムを組み合わせることで,相対的なナビゲーションを実現する方法について論じる。
高速領域ベース畳み込みニューラルネットワーク(R-CNN)とYou Only Look Once(YOLOv5)の2つのディープラーニングに基づくオブジェクト検出アルゴリズムの性能を検証した。
本稿では, 特徴認識アルゴリズムの実装と, 宇宙船誘導航法制御システムへの統合に向けての道筋について論じる。
論文 参考訳(メタデータ) (2023-01-22T04:53:38Z) - Towards Spatial Equilibrium Object Detection [88.9747319572368]
本稿では,現代物体検出器の空間的不平衡問題について考察する。
本稿では,ゾーンにおける検出性能の測定により,この問題の定量化を提案する。
これは、より一般化された測度を設計する動機となり、空間平衡精度と呼ばれる。
論文 参考訳(メタデータ) (2023-01-14T17:33:26Z) - ParticleSfM: Exploiting Dense Point Trajectories for Localizing Moving
Cameras in the Wild [57.37891682117178]
本稿では,一対の光流からの高密度対応に基づく動画の高密度間接構造抽出手法を提案する。
不規則点軌道データを処理するために,新しいニューラルネットワークアーキテクチャを提案する。
MPIシンテルデータセットを用いた実験により,我々のシステムはより正確なカメラ軌道を生成することがわかった。
論文 参考訳(メタデータ) (2022-07-19T09:19:45Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
ニューラルネットワーク層のBi-Lipschitz正規化は、各レイヤの特徴空間におけるデータインスタンス間の相対距離を保存する。
注意セットエンコーダを用いて,タスク固有の共分散行列を効率的に構築するために,対角的,対角的,低ランクな要素のメタ学習を提案する。
また,最終的な予測分布を達成するために,スケールしたエネルギーを利用する推論手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T22:04:19Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
ViMON, OP3, TBA, SCALORの4つのオブジェクト中心アプローチの知覚能力を比較した。
この結果から,制約のない潜在表現を持つアーキテクチャは,オブジェクト検出やセグメンテーション,トラッキングといった観点から,より強力な表現を学習できる可能性が示唆された。
我々のベンチマークは、より堅牢なオブジェクト中心のビデオ表現を学習するための実りあるガイダンスを提供するかもしれない。
論文 参考訳(メタデータ) (2020-06-12T09:37:24Z) - Topological Sweep for Multi-Target Detection of Geostationary Space
Objects [43.539256589118644]
我々の研究は、静止軌道(GEO)における人工物体の光学的検出に焦点を当てている。
GEO物体検出は、明るい恒星の散らばりの中で小さな点として現れるターゲットの距離のために困難である。
本稿では,光画像の短いシーケンスからGEOオブジェクトを見つけるために,トポロジカルスイープに基づく新しいマルチターゲット検出手法を提案する。
論文 参考訳(メタデータ) (2020-03-21T06:00:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。