Compact and Intuitive Airfoil Parameterization Method through
Physics-aware Variational Autoencoder
- URL: http://arxiv.org/abs/2311.10921v1
- Date: Sat, 18 Nov 2023 00:30:03 GMT
- Title: Compact and Intuitive Airfoil Parameterization Method through
Physics-aware Variational Autoencoder
- Authors: Yu-Eop Kang, Dawoon Lee, and Kwanjung Yee
- Abstract summary: Airfoil shape optimization plays a critical role in the design of high-performance aircraft.
To overcome this problem, numerous airfoil parameterization methods have been developed.
But a single approach that encompasses all of these attributes has yet to be found.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Airfoil shape optimization plays a critical role in the design of
high-performance aircraft. However, the high-dimensional nature of airfoil
representation causes the challenging problem known as the "curse of
dimensionality". To overcome this problem, numerous airfoil parameterization
methods have been developed, which can be broadly classified as
polynomial-based and data-driven approaches. Each of these methods has
desirable characteristics such as flexibility, parsimony, feasibility, and
intuitiveness, but a single approach that encompasses all of these attributes
has yet to be found. For example, polynomial-based methods struggle to balance
parsimony and flexibility, while data-driven methods lack in feasibility and
intuitiveness. In recent years, generative models, such as generative
adversarial networks and variational autoencoders, have shown promising
potential in airfoil parameterization. However, these models still face
challenges related to intuitiveness due to their black-box nature. To address
this issue, we developed a novel airfoil parameterization method using
physics-aware variational autoencoder. The proposed method not only explicitly
separates the generation of thickness and camber distributions to produce
smooth and non-intersecting airfoils, thereby improving feasibility, but it
also directly aligns its latent dimensions with geometric features of the
airfoil, significantly enhancing intuitiveness. Finally, extensive comparative
studies were performed to demonstrate the effectiveness of our approach.
Related papers
- Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation [7.136205674624813]
We introduce a data-driven methodology for airfoil generation using a diffusion model.
Trained on a dataset of preexisting airfoils, our model can generate an arbitrary number of new airfoils from random vectors.
arXiv Detail & Related papers (2024-08-28T16:12:16Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
We introduce a novel method, DiffHybrid-UQ, for effective and efficient uncertainty propagation and estimation in hybrid neural differentiable models.
Specifically, our approach effectively discerns and quantifies both aleatoric uncertainties, arising from data noise, and epistemic uncertainties, resulting from model-form discrepancies and data sparsity.
arXiv Detail & Related papers (2023-12-30T07:40:47Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - On the Effectiveness of Parameter-Efficient Fine-Tuning [79.6302606855302]
Currently, many research works propose to only fine-tune a small portion of the parameters while keeping most of the parameters shared across different tasks.
We show that all of the methods are actually sparse fine-tuned models and conduct a novel theoretical analysis of them.
Despite the effectiveness of sparsity grounded by our theory, it still remains an open problem of how to choose the tunable parameters.
arXiv Detail & Related papers (2022-11-28T17:41:48Z) - Parametric Generative Schemes with Geometric Constraints for Encoding
and Synthesizing Airfoils [25.546237636065182]
Two deep learning-based generative schemes are proposed to capture the complexity of the design space while satisfying specific constraints.
The soft-constrained scheme generates airfoils with slight deviations from the expected geometric constraints, yet still converge to the reference airfoil.
The hard-constrained scheme produces airfoils with a wider range of geometric diversity while strictly adhering to the geometric constraints.
arXiv Detail & Related papers (2022-05-05T05:58:08Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
We introduce new techniques to formulate the problem as solving Fokker-Planck equation in a lower-dimensional latent space.
Our proposed model consists of latent-distribution morphing, a generator and a parameterized Fokker-Planck kernel function.
arXiv Detail & Related papers (2021-05-10T17:42:01Z) - Designing Air Flow with Surrogate-assisted Phenotypic Niching [117.44028458220427]
We introduce surrogate-assisted phenotypic niching, a quality diversity algorithm.
It allows to discover a large, diverse set of behaviors by using computationally expensive phenotypic features.
In this work we discover the types of air flow in a 2D fluid dynamics optimization problem.
arXiv Detail & Related papers (2021-05-10T10:45:28Z) - Airfoil GAN: Encoding and Synthesizing Airfoils for Aerodynamic Shape
Optimization [9.432375767178284]
We propose a data-driven shape encoding and generating method, which automatically learns representations from existing airfoils and uses the learned representations to generate new airfoils.
Our model is built upon VAEGAN, a neural network that combines Variational Autoencoder with Generative Adversarial Network and is trained by the gradient-based technique.
arXiv Detail & Related papers (2021-01-12T21:25:45Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.