Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models
- URL: http://arxiv.org/abs/2507.23443v1
- Date: Thu, 31 Jul 2025 11:21:20 GMT
- Title: Adjoint-Based Aerodynamic Shape Optimization with a Manifold Constraint Learned by Diffusion Models
- Authors: Long Chen, Emre Oezkaya, Jan Rottmayer, Nicolas R. Gauger, Zebang Shen, Yinyu Ye,
- Abstract summary: We introduce an adjoint-based aerodynamic shape optimization framework that integrates a diffusion model trained on existing designs to learn a smooth manifold of aerodynamically viable shapes.<n>We demonstrate how AI generated priors integrates effectively with adjoint methods to enable robust, high-fidelity aerodynamic shape optimization through automatic differentiation.
- Score: 12.019764781438603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce an adjoint-based aerodynamic shape optimization framework that integrates a diffusion model trained on existing designs to learn a smooth manifold of aerodynamically viable shapes. This manifold is enforced as an equality constraint to the shape optimization problem. Central to our method is the computation of adjoint gradients of the design objectives (e.g., drag and lift) with respect to the manifold space. These gradients are derived by first computing shape derivatives with respect to conventional shape design parameters (e.g., Hicks-Henne parameters) and then backpropagating them through the diffusion model to its latent space via automatic differentiation. Our framework preserves mathematical rigor and can be integrated into existing adjoint-based design workflows with minimal modification. Demonstrated on extensive transonic RANS airfoil design cases using off-the-shelf and general-purpose nonlinear optimizers, our approach eliminates ad hoc parameter tuning and variable scaling, maintains robustness across initialization and optimizer choices, and achieves superior aerodynamic performance compared to conventional approaches. This work establishes how AI generated priors integrates effectively with adjoint methods to enable robust, high-fidelity aerodynamic shape optimization through automatic differentiation.
Related papers
- Flows and Diffusions on the Neural Manifold [0.0]
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling.<n>We extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics.
arXiv Detail & Related papers (2025-07-14T02:26:06Z) - Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Efficient Design of Compliant Mechanisms Using Multi-Objective Optimization [50.24983453990065]
We address the synthesis of a compliant cross-hinge mechanism capable of large angular strokes.<n>We formulate a multi-objective optimization problem based on kinetostatic performance measures.
arXiv Detail & Related papers (2025-04-23T06:29:10Z) - Accelerated Gradient-based Design Optimization Via Differentiable Physics-Informed Neural Operator: A Composites Autoclave Processing Case Study [0.0]
We introduce a novel Physics-Informed DeepONet (PIDON) architecture to effectively model the nonlinear behavior of complex engineering systems.<n>We demonstrate the effectiveness of this framework in the optimization of aerospace-grade composites curing processes achieving a 3x speedup.<n>The proposed model has the potential to be used as a scalable and efficient optimization tool for broader applications in advanced engineering and digital twin systems.
arXiv Detail & Related papers (2025-02-17T07:11:46Z) - Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation [7.136205674624813]
We introduce a data-driven methodology for airfoil generation using a diffusion model.<n>Trained on a dataset of preexisting airfoils, our model can generate an arbitrary number of new airfoils from random vectors.
arXiv Detail & Related papers (2024-08-28T16:12:16Z) - Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models [54.132297393662654]
We introduce a hybrid method that fine-tunes cutting-edge diffusion models by optimizing reward models through RL.
We demonstrate the capability of our approach to outperform the best designs in offline data, leveraging the extrapolation capabilities of reward models.
arXiv Detail & Related papers (2024-05-30T03:57:29Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - Aligning Optimization Trajectories with Diffusion Models for Constrained
Design Generation [17.164961143132473]
We introduce a learning framework that demonstrates the efficacy of aligning the sampling trajectory of diffusion models with the optimization trajectory derived from traditional physics-based methods.
Our method allows for generating feasible and high-performance designs in as few as two steps without the need for expensive preprocessing, external surrogate models, or additional labeled data.
Our results demonstrate that TA outperforms state-of-the-art deep generative models on in-distribution configurations and halves the inference computational cost.
arXiv Detail & Related papers (2023-05-29T09:16:07Z) - Automatic Parameterization for Aerodynamic Shape Optimization via Deep
Geometric Learning [60.69217130006758]
We propose two deep learning models that fully automate shape parameterization for aerodynamic shape optimization.
Both models are optimized to parameterize via deep geometric learning to embed human prior knowledge into learned geometric patterns.
We perform shape optimization experiments on 2D airfoils and discuss the applicable scenarios for the two models.
arXiv Detail & Related papers (2023-05-03T13:45:40Z) - Parametric Generative Schemes with Geometric Constraints for Encoding
and Synthesizing Airfoils [25.546237636065182]
Two deep learning-based generative schemes are proposed to capture the complexity of the design space while satisfying specific constraints.
The soft-constrained scheme generates airfoils with slight deviations from the expected geometric constraints, yet still converge to the reference airfoil.
The hard-constrained scheme produces airfoils with a wider range of geometric diversity while strictly adhering to the geometric constraints.
arXiv Detail & Related papers (2022-05-05T05:58:08Z) - Efficient Differentiable Simulation of Articulated Bodies [89.64118042429287]
We present a method for efficient differentiable simulation of articulated bodies.
This enables integration of articulated body dynamics into deep learning frameworks.
We show that reinforcement learning with articulated systems can be accelerated using gradients provided by our method.
arXiv Detail & Related papers (2021-09-16T04:48:13Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
We propose a dissipative extension of Dirac's theory of constrained Hamiltonian systems as a general framework for solving optimization problems.
Our class of (accelerated) algorithms are not only simple and efficient but also applicable to a broad range of contexts.
arXiv Detail & Related papers (2021-07-23T13:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.